

Research on Improving Methods for

Visualizing Common Elements in Video

Game Applications

ビデオゲームアプリケーションビデオゲームアプリケーションビデオゲームアプリケーションビデオゲームアプリケーションにおけるにおけるにおけるにおける共通的共通的共通的共通的

なななな要素要素要素要素のののの視覚化手法視覚化手法視覚化手法視覚化手法のののの改良改良改良改良にににに関関関関するするするする研究研究研究研究

JuneJuneJuneJune 2013201320132013

Graduate School of Global Information and Graduate School of Global Information and Graduate School of Global Information and Graduate School of Global Information and Telecommunication StudiesTelecommunication StudiesTelecommunication StudiesTelecommunication Studies

Waseda UniversityWaseda UniversityWaseda UniversityWaseda University

 Title of the projectTitle of the projectTitle of the projectTitle of the project

Research on Image Processing II

CandidateCandidateCandidateCandidate’’’’s names names names name

Sven Dierk Michael Forstmann

2 Index

Index 3

Acknowledgements

Foremost, I would like to express my sincere thanks to my advisor Prof. Jun Ohya for his

continuous support of my Ph.D study and research. His guidance helped me in all the time of my

research and with writing of this thesis.

I would further like to thank the members of my PhD committee, Prof. Shigekazu Sakai, Prof.

Takashi Kawai, and Prof. Shigeo Morishima for their valuable comments and suggestions.

For handling the formalities and always being helpful when I had questions, I would like to thank

the staff of the Waseda GITS Office, especially Yumiko Kishimoto san.

For their financial support, I would like to thank the DAAD (Deutscher Akademischer

Austauschdienst), the Japanese Government for supporting me with the Monbukagakusho

Scholarship and ITO EN Ltd, for supporting me with the Honjo International Scholarship.

For their courtesy of allowing me the use of some of their screenshots, I would like to thank John

Olick, Bernd Beyreuther, Prof. Ladislav Kavan and Dr. Cyril Crassin.

Special thanks are given to my friends Dr. Gleb Novichkov, Prof. Artus Krohn-Grimberghe,

Yutaka Kanou, and Dr. Gernot Grund for their encouragement and insightful comments.

Last, I would like to thank my family: my parents Dierk and Friederike Forstmann, and my

brother Hanjo Forstmann for their support and encouragement throughout the thesis.

4 Index

Index 5

Index

Index 5

Figure Index ... 9

Table Index .. 14

 Introduction ... 16 Chapter 1.

1.1 Background ... 16

1.2 Related Work .. 20

1.2.1 Overview ... 20

1.2.2 Terrain ... 20

1.2.3 Static Objects .. 22

1.2.4 Skeletal Animation .. 24

1.3 Purpose .. 26

1.3.1 Terrain ... 26

1.3.2 Static Objects .. 27

1.3.3 Skeletal Animated Objects .. 27

1.4 Approach ... 27

1.4.1 Terrain ... 27

1.4.2 Static Objects .. 28

1.4.3 Skeletal Animation .. 29

1.5 Organization .. 29

 3D Engine ... 32 Chapter 2.

2.1 History ... 32

2.2 3D engine in Game Engine ... 33

2.2.1 Game Engine ... 33

2.3 3D Engine Structure and Functions .. 35

2.3.1 Background Pass ... 37

2.3.2 Main Pass .. 37

2.3.3 Post-Processing Pass ... 37

2.4 Visualization by 3D Engine .. 38

2.4.1 Items to be visualized .. 38

2.4.2 Combining multiple modules .. 39

2.5 Module Comparison .. 41

2.5.1 General Comparison.. 41

6 Index

2.5.2 Terrain Comparison ... 42

2.5.3 Static Objects Comparison .. 43

2.5.4 Skeletal Animation Comparison .. 43

2.6 Conclusion ... 44

 Terrain .. 45 Chapter 3.

3.1 Goals .. 45

3.2 Related Work ... 45

3.2.1 Procedural Terrain Generation .. 45

3.2.2 Polygonal Visualization of Volumetric Terrains ... 46

3.3 Proposed Method ... 47

3.3.1 Overview ... 48

3.3.2 Differences between the proposed method and Previous Work 51

3.4 Clip-Box Algorithm ... 52

3.4.1 Clip-Box .. 53

3.4.2 Data Structure .. 53

3.4.3 Procedural Volume-Data Creation .. 54

3.4.4 Volume-Data to Polygon Conversion .. 55

3.4.5 Nesting ... 58

3.4.6 Moving the View-Point ... 59

3.4.7 Geometry Post-Processing ... 60

3.5 Experimental Results and Discussion .. 62

3.5.1 Implementation .. 62

3.5.2 Immediate Visualization .. 63

3.5.3 Unlimited Terrain Size .. 64

3.5.4 Concurrent execution of generation and visualization .. 66

3.5.5 Demonstration ... 70

3.5.6 Limitations ... 71

3.6 Conclusion ... 71

 Static Objects .. 73 Chapter 4.

4.1 Goals .. 73

4.2 Related Work ... 73

4.3 Input Data .. 74

4.3.1 Polygon Data Import ... 74

4.3.2 Volume Data Import .. 75

4.3.3 Procedural Voxel Objects: Trees ... 77

4.4 Proposed Algorithm ... 79

4.4.1 Overview ... 79

4.4.2 Improvements over Previous Work ... 80

4.4.3 Difference to Volume Rendering ... 81

4.4.4 Trends in CPU and GPU Development ... 82

4.4.5 Details of the proposed Algorithm .. 84

Index 7

4.4.6 Pre-Processing ... 86

4.4.7 Level-of-Detail Computation .. 88

4.5 Rendering .. 89

4.5.1 Vanishing-Point .. 89

4.5.2 Concentric Planes .. 89

4.5.3 Plane Parameters ... 90

4.5.4 Rasterizing the Ray Buffer .. 91

4.5.5 Displaying the Ray-Buffer .. 96

4.5.6 Quality Aspects ... 97

4.6 Experimental Results .. 100

4.6.1 Experimental Conditions ... 100

4.6.2 Memory Consumption .. 100

4.6.3 Algorithm Speed ... 101

4.6.4 Rendering Quality ... 104

4.6.5 Comparison to Related Methods and Discussion .. 107

4.7 Conclusion .. 122

 Skeletal Animation .. 125 Chapter 5.

5.1 Goals ... 125

5.1.1 Spline Skinning ... 125

5.1.2 Deformation Styles.. 125

5.2 Related Work .. 125

5.2.1 Spline Skinning ... 126

5.2.2 Deformation Styles.. 127

5.3 Proposed Method .. 127

5.3.1 Spline Skinning ... 127

5.3.2 Deformation Styles.. 128

5.4 Splines ... 130

5.4.1 Fundamentals .. 130

5.4.2 Spline Aligned Deformation ... 132

5.4.3 Spline Binding ... 132

5.5 Spline Skinning ... 133

5.6 Deformation Styles.. 134

5.6.1 Radial Scale Envelope (Style 1) .. 135

5.6.2 Rectangular Scale Envelope (Style2) .. 138

5.7 Deformation Styles and Spline Skinning .. 140

5.8 Fast Computation based on the GPU .. 141

5.8.1 Pass 1... 142

5.8.2 Pass 2... 143

5.8.3 Pass Three ... 145

5.9 Experimental Results and Discussion ... 145

5.9.1 Experimental Conditions ... 145

8 Index

5.9.2 Non-Collapsing Geometry ... 145

5.9.3 Small Number of Control Points ... 148

5.9.4 Deformation Style Results ... 148

5.9.5 Computation Speed .. 153

5.9.6 Re-Usability ... 155

5.9.7 Other contributions .. 155

5.9.8 Comprehensive Evaluation .. 155

5.9.9 Limitations ... 158

5.10 Conclusion ... 159

 Conclusion and Future Work ... 161 Chapter 6.

6.1 Conclusion ... 161

6.2 Future Work ... 163

Bibliography ... 164

Figure Index 9

Figure Index

Figure 1.1 3D Engine: Example of a screenshot of DrakenSang, a game by

BigPoint/RadonLabs based on the Nebula Device game engine. Screenshot by

courtesy of Bernd Beyreuther, head of game-production at BigPoint/RadonLabs. 19

Figure 1.2 Overview: This diagram shows the three main modules and their data connections.

The numbers indicate the chapter in this thesis. ... 26

Figure 2.1 Overview of Game Engine and 3D Engine: black triangle: modules explored by

this thesis. ... 34

Figure 2.2 General 3D engine Overview: This diagram shows the render flow of a common

3D engine including additional post processing modules in a simplified manner. The

black triangle marks modules correspond to this thesis’ chapters 3 to 5. 36

Figure 2.3 Main render passes of general 3D engines: upper row: terrain, middle row: static

objects, lower row: characters; left column: color buffer, right column: depth buffer

(bright: close, dark: far). ... 40

Figure 2.4 Illustrated Comparison .. 41

Figure 3.1 Overview of the terrain visualization module: Using two threads helps to

optimally distribute the rendering and voxel to polygon conversion tasks on modern

multi-core-CPUs. .. 49

Figure 3.2 Evolution from Clip-Map to Clip-Box (CB); Top left: Nested geometry clip-maps

[12] Top right: the Clip-Box based approach as sketch; lower: and the final result as

a wire-frame. ... 50

Figure 3.3 Clip-Box: Left: the pure Clip-Box geometry; right: CB embedded into the

landscape. ... 51

Figure 3.4 Adjacency information between surfaces, vertices and voxels. 54

Figure 3.5 Terrain synthesis: based on CSG (constructive solid geometry) and Boolean

operations. .. 55

Figure 3.6 Clip-Box connectivity: A simple method (left) yields an erroneous gap, while the

improved version (right) solves this problem ... 56

Figure 3.7 Seamless connections by improved method. ... 56

Figure 3.8 Voxel to polygon conversion: Surface creation in the 2D case. 57

Figure 3.9 Geometry-processing: The four images show the proposed steps to process the

initial mesh: (1) direct conversion from volume data (2) smoothed (3) surface

subdivision (4) synthetic details. .. 57

Figure 3.10 Moving the viewpoint: ○ initial point, ●: the next view-point. 59

Figure 3.11 Caching volume data ... 60

Figure 3.12 Triangle subdivision. Upper: adding vertices (white circles), lower: subdivision

example ... 61

Figure 3.13 Fractal details: Image 1: no fractal details. Image 2: fractal details for the

innermost CB. Image 3: Fractal details for the two innermost CBs. Image 4: Fractal

details for the three innermost CBs. ... 61

Figure 3.14 Smoothing errors and their elimination: Upper-left: Original image with

smoothing errors, Upper-right: Result of smoothing; Lower-left: pattern is replaced

by lower right pattern. .. 62

Figure 3.15 Terrain used for Benchmark. ... 63

10 Figure Index

Figure 3.16 Terrain visualization from height-map (real data) Puget Sound region in WA,

USA. .. 64

Figure 3.17 Function plotting and real data: [1] to [3]: three different mathematical

functions; [4] conventional iso surfaces. ... 65

Figure 3.18 Continuous performance: for a flight in the landscape in Fig. 3.5. Upper:

polygon vs time, middle: time to visualize one frame vs time, bottom: million

polygons per second vs time. .. 68

Figure 3.19 Screen-space error: Comparing the highest Clip-Box resolution (192) with lower

resolutions: 64 (top-most), 96 (2
nd

 top), 128 (third), and 160 (fourth). 69

Figure 3.20 Examples of synthesizing terrain. .. 70

Figure 4.1 Rasterization of a single 2D triangle.. 74

Figure 4.2 Rasterization of 3D Polygon Data: Imported result of the Happy Buddha PLY

Dataset with approximately one million polygons. ... 75

Figure 4.3 MRI Bonsai Data-Set: A screenshot of the original semi-transparent data rendered

in V3, available at The Volume Library. .. 76

Figure 4.4 Volume-Data Import: A forest scene created by the voxelized Bonsai data-set. 77

Figure 4.5 Tree Generation: The tree is created using spheres, random mid-point

displacement and finally the L-system. ... 78

Figure 4.6 Example of Procedural Voxel Trees. ... 79

Figure 4.7. Hardware comparison: CPU vs GPU in terms of theoretical GFlops and

theoretical memory bandwidth (source: NVidia) .. 83

Figure 4.8. Proposed algorithm: (a) side view, (b) top-view. ... 84

Figure 4.9. Pipeline for the proposed method: in “Render Scene” Section, numbers are

indicated. ... 85

Figure 4.10 Pre-Processing: The initial volume data (left), removal of non-surface voxels

(middle), RLE compressed (right). ... 87

Figure 4.11 Data structure:Pointer-map: For each pointer-map element’s data, one RLE

column is to pointed by a pointer and decoded by RLE 88

Figure 4.12 Screen segmentation: VP represents the vanishing point; Seg 1 to 4 refer to

segments 1 to 4 respectively. .. 90

Figure 4.13 Equidistant and exact raycasting: Left: Equidistant; Right: Exact raycast; Upper:

sampling; Lower: Example of rendering. .. 91

Figure 4.14 Ray mapping: 1 to 4 denote segments 1 to 4; Upper: The temporary buffer with

the four segments; Lower: mapping to the screen. .. 94

Figure 4.15 Skip-Buffer. ... 96

Figure 4.16 Smoothing results: Left: without smoothing; middle: smoothed silhouette; right:

smoothed interior part ... 97

Figure 4.17 Smoothing steps: a) Target pixel; b) Find minimum depth (Z); c) Box-filter with

threshold, scaled according to the minimum depth; d) Result. 98

Figure 4.18 Anti-aliasing (AA): left: Non AA; middle: 2x1 AA; right: 2x2 pixel AA. 98

Figure 4.19 Normals: The depth-buffer can successfully be utilized to compute normal

vectors on-the-fly (Left). These can be utilized for shading and further enhanced with

screen space ambient occlusions (Right). ... 99

Figure 4.20 Scenes used for tests: Handcrafted mansion (upper-left), Bonsai forest with 3000

trees (upper-right), Hotei, or Happy Buddha, (middle left) and a Procedural

Landscape with about 4000 visible trees (middle right), the Stanford Dragon (lower-

left) and the Stanford Bunny (lower-right). Unit for the number is given in voxels. 101

Figure 4.21 GPU vs CPU: The GPU version running on an NVidia GTX 285 is compared to

the CPU version (Intel Q6600 4x3Ghz). ... 102

Figure Index 11

Figure 4.22 Raycasting vs Splatting (1): left: the proposed RLE method; middle: quad

splatting; right: triangle splatting .. 103

Figure 4.23 Raycasting vs Splatting (2): left: the proposed RLE method; middle: quad

splatting; right: triangle splatting .. 103

Figure 4.24 Quality: To show the ability to render at high quality, a complex test scene with

many fine details was created and rendered at 512 � 348 pixel with 2 � 2 AA as

well as no AA for a comparison. Note that 2 � 2 AA successfully removes aliasing

artifacts for distant pixels. .. 105

Figure 4.25 Raycasting vs Splatting (3): render quality for geometry close to the camera;

left: the proposed RLE method; middle: quad based splatting; right: triangle splatting105

Figure 4.26 Richtmyer-Meshkov dataset .. 106

Figure 4.27 Memory consumption (3): QSplat, Sparse Voxel Octree and Triangle raycasting

compared to the proposed method. ... 111

Figure 4.28 Speed comparison (1): Triangle rasterization compared to the proposed method

for multiple camera configurations. .. 112

Figure 4.29 Speed comparison (2): Triangle rasterization compared to the proposed method

for multiple camera configurations. .. 112

Figure 4.30 Speed comparison (3): Triangle rasterization compared to the proposed method

for a complex scene with multiple Imrod models. ... 113

Figure 4.31 Speed comparison (4): GigaVoxel and this thesis’ Sparse Voxel Octree

Raycasting (that was implemented for comparison purposes) is compared to the

proposed method for multiple camera configurations. The GigaVoxels [43]

screenshots are with courtesy of Cyril Crassin ... 113

Figure 4.32 Speed comparison (5): Sparse Voxel Octree Raycasting of Jon Olick is

compared to this thesis’ Sparse Voxel Octree Raycasting method and to the proposed

method. The Sparse Voxel Octree Raycasting screenshot (left) is with courtesy of

Jon Olick. .. 114

Figure 4.33 Speed comparison (6): this thesis’ Sparse Voxel Octree and triangle raycasting

are compared to the proposed method. ... 114

Figure 4.34 Speed comparison (7): this thesis’ Sparse Voxel Octree is compared to the

proposed method and to triangle raycasting. .. 115

Figure 4.35 Speed comparison (8): this thesis’ Sparse Voxel Octree is compared to the

proposed method and to triangle raycasting ... 116

Figure 4.36 Speed comparison (9): this thesis’ Sparse Voxel Octree is compared to the

proposed method... 116

Figure 4.37 Speed comparison (10): the proposed method is compared to QSplat. 117

Figure 4.38 Visual Precision (1): the proposed method is compared to triangle rasterization. 117

Figure 4.39 Visual Precision (2): the proposed method is compared to GigaVoxels. The

GigaVoxels screenshots is with courtesy of Cyril Crassin ... 118

Figure 4.40 Visual Precision (3): the proposed method is compared to triangle raycasting. ... 118

Figure 4.41 Visual Precision (4): the proposed method is compared to QSplat. 119

Figure 4.42 Visual Precision (5): the proposed method is compared to QSplat, close-up view.

 .. 120

Figure 4.43 Visual Precision (6): the proposed method is compared to Sparse Voxel Octree

Raycasting. The Sparse Voxel Octree Raycasting screenshot (left) is with courtesy of

Jon Olick. .. 120

Figure 4.44 Summary of memory consumption per element. .. 121

Figure 4.45 Summary of computation speed for high screen resolutions (2048x768). 121

Figure 4.46 Summary (3): visual precision. ... 122

12 Figure Index

Figure 5.1 Proposed spline skinning and deformation styles. Top: spline skinning, middle:

spline aligned deformations, bottom: deformation styles. .. 129

Figure 5.2 Bend and Twist deformations: left: FFD, middle: SSD, right: spline aligned

deformation. .. 129

Figure 5.3 Spline functions: In the upper row, the short-listed spline functions are compared.

The lower row shows the ability of the spline to adjust the stiffness by parameter a. .. 131

Figure 5.4 The spline coordinate system: left: the spline function in violet together with the

spline’s coordinate system, where the spline’s tangent is indicated in blue, the normal

in red, the bi-normal in green and the origin of each coordinate system in yellow;

right: an example deformation. ... 132

Figure 5.5 The binding process: (left) the perpendicular mapping of vertex v to the spline by

using binary search, (right) a way to determine the search direction in each step. 133

Figure 5.6 Spline skinning: skinning weights ... 134

Figure 5.7 Deformation Styles .. 135

Figure 5.8 Radial Scale Envelope: The lower left side shows an example envelope while the

upper right side shows the concentric scaling of v in relation to the spline 136

Figure 5.9 Scale Textures: The upper row shows the three scale textures that were used to

create Style 1 in Fig. 5.7 and an example object where the textures are applied. The

lower row shows the pose-dependent weight calculation to apply the three textures,

where red corresponds to the weight of the frontal scale texture, green to the lateral

and blue to the radial. .. 137

Figure 5.10 Rectangular Scale Envelope: The left side shows the application to an example

object while the right side shows the scaling of � corresponding to 	
 and 	� 138

Figure 5.11 Rectangular Scaling: The upper row shows the three scale functions. The lower

row shows the pose-dependent weights. ... 139

Figure 5.12 GPGPU based accelerations of the computations. ... 141

Figure 5.13 Shared Texture 1. Vertex normals (N), weights (W), bone indices (I) and spline

offsets (O) are stored in one texture. The NWIO pattern applies for the empty space

of the texture as well. .. 143

Figure 5.14 Shared texture 2. Scale textures and scale curves are stored in one large texture.

Each texel’s RGBA value in the texture (left) is used as defined on the right side. 144

Figure 5.15 Spline discretization: Pre-computing all splines is one of the key improvements

in the implementation to increase the speed. ... 145

Figure 5.16 Basic Spline Skinning: Three poses for an animated chest-arm-shoulder model.

The binding pose (left), simple bend operation (middle), and, finally, bending

combined with two twist operations, for the hand and for the body (right). 146

Figure 5.17 Spline Skinning with a simple muscle deformation style in 8 frames. 146

Figure 5.18 Facial Animation: Lips and cloth folds can be animated using spline skinning.

Up-left the final animation and up-right the bind pose, where each color R,G,B is

assigned to one spline. The lower part shows an animation sequence. 147

Figure 5.19 Spline Skinning compared to matrix skinning for multiple joints. 147

Figure 5.20 Metal: This Figure shows the animation of designed metal, which smoothly

deforms as the pose changes. Upper row: deformation styles are applied; lower row:

spline skinning without deformation styles. .. 149

Figure 5.21 Muscles: Created muscles can easily be applied to different characters

simultaneously. ... 149

Figure 5.22 Muscles on David:middle: without, right: with. .. 150

Figure 5.23 Hollow materials: Here an animation of crunching an empty can. 150

Figure Index 13

Figure 5.24 Self-intersections: Demonstrated are self-intersections (up-left) and the efficient

removal of self-intersections (up-right) as well as modeled lateral bulges. The used

curves are shown in the lower row.. ... 151

Figure 5.25 Cloth: This example shows the algorithm’s ability to imitate cloth-like wrinkles.

Upleft and down-left: non-style version. Up-right and down-right: deformation styles

version. The red circles show the affected region. ... 152

Figure 5.26 Benchmark results: Spline skinning indicates basic spline aligned deformation,

Radial adds Drad, Rect adds Drect and Rect+Radial adds both. 153

Figure 5.27 SSD, DQS and Spline Skinning Methods Compared (1): upper row: twist

operation, lower row: bend operation ... 156

Figure 5.28 QS and DQS Skinning Methods Compared (2). Left: artifact-free twist

operation; right: cloth deformation. Images with courtesy of Ladislav Kavan,

Skinning with Dual Quaternions [20] ... 157

14 Table Index

Table Index

Table 2.1 Module comparison: In the table, “+” indicates that the feature is available and “-

“ indicates that the feature is unavailable. For unknown support the fields are left

empty. .. 42

Table 3.1 Performance analysis: In the upper row, update and render times for one CB

resolution (128) are analyzed in detail, while the lower row compares the

performance of different CB resolutions. .. 66

Table 4.1 Benchmark Tests: The RLE element count in the frustum (Total), the processed

element count (Proc) and the rendered element count in million (Ren). The resolution

is stated in voxel. Further, Fps denotes frames per second and Speed is given in

million RLE elements per second (Elems/s) ... 100

Table 4.2 Memory consumption (1): Triangles compared to the proposed method (voxel) 111

Table 4.3 Memory consumption (2): GigaVoxels [37] compared to the proposed method for

the Sponza scene. The GigaVoxels screenshot is with courtesy of Cyril Crassin 111

Table 5.1 Texture formats: Here an overview of the used texture and buffer formats.............. 142

Table 5.2 Timing breakdown: ... 154

Table 5.3 Related methods and their features. .. 156

Table Index 15

16 Chapter 1 Introduction

 Introduction Chapter 1.

1.1 Background

Since the invention of computers in the 1940’s by Konrad Zuse (Z3, 1941 and Z4, 1945), John

Presper Eckert and John William Mauchly (ENIAC, 1946)1, data acquisition, data processing, and

data visualization have been elementary tasks in computer science.

The history in computer graphics (CG) has begun only shortly after the invention of the computer

in the 1950’s. Already at that time, General Motors started to research and develop the previously

mentioned computer aided design system 2 for virtual car design. At that time, graphics had

represented entirely by vector graphics on cathode ray tubes (CRT), rather than pixel graphics.

Graphics at that time only consisted of dots and lines.

The next milestone in the development of CG was the visualization of avatars in the 1960’s. The

main elements of today’s 3D graphics such as raster-graphics, ray-tracing, texture mapping, bump

mapping, reflection mapping, and the depth-buffer were finally developed in the 1970’s.

In the 1980’s, the visualization quality was further improved, and methods such as 3D graphics

related technologies and global illumination were invented. As 3D graphics technologies grew,

CG started being used for many applications such as such as scientific and/or engineering,

medicine, art, education and entertainment. The 1980’s were also the years when CG became

important for the entertainment business. CG appeared in Hollywood movies such as Star Trek

and Tron3 as well as in 3D video games such as Cube Quest4.

As the video game market is growing, the segment of the game industry also keeps evolving.

Already in 2008, the video games industry had grown larger than the movie industry5. Nowadays,

the development of a top video-game, a so called triple A (AAA) title, cannot anymore be carried

out by a few people in a garage. Large studios are mandatory, and production costs of up to 100

million US Dollars 6 and more7 have to be taken into account. In the video game market, Japan

plays a particularly significant role as its market share is, with a revenue of over 7 Billion USD as

of 20088, the world’s second largest.

1 United States Army. ENIAC Electronic Numerical Integrator And Computer. 1946.
2 General Motors, IBM. DAC-1 Design Augmented by Computer. 1960.
3 Lisberger, Steven. Tron. Walt Disney Productions, 1982.

4 Simutrek Inc. Cube Quest. 1983.

5 TomsGuide. Video Games Outsell Movies http://www.tomsguide.com/us/Games-DVD-Blu-ray-Economy,news-3364.html. 2012.
6 DigitalBattle. Top 10 most expensive video games budgets ever.

 http://www.digitalbattle.com/2010/02/20/top-10-most-expensive-video-games-budgets-ever. 2010.
7 GameBandits. Star Wars – The Old Republic.

 http://www.gamebandits.com/news/pc/star-wars-the-old-republic-new-voidstar-trailer-released-20393/. 2012.
8 Analysis: Trends in the Japanese Game Market. http://www.gamasutra.com/php-bin/news_index.php?story=20461. 2008.

Chapter 1 Introduction 17

In the 1980’s, first video games were developed independently, without using any third-party

software. The reason for that was that most games were developed for arcade machines, which

had unique hardware. The program code was very platform-dependent; i.e., written for one

platform, thereby it could not be reused on another. On home computers of the time, such as the

Commodore 64, Amiga 500 and Atari ST, third-party game engines were not yet common. Games

at that time did not require complex algorithms and had much less lines of code, which made the

development easier. Therefore, source code was rarely re-used. Examples of re-use of code were

sequels to a game, but in that case they re-used the entire game, not an abstract part such as a

game engine.

With the evolution of Intel x-86 architecture and the beginning of 3D graphics in the early 1990’s,

a significant increase in the complexity of game development happened. At that time, the first

game engines for 3D games, such as the Doom engine9 and the Build engine10 appeared. Both

engines used software rendering and provided simple 3D support. Items and characters in the

game were represented by billboards. The camera’s motion was limited as well, and not able to be

translated and rotated with six degrees of freedom. For the level design in Doom, room over room

was impossible. Due to several of those limitations, both engines were often referred to as 2.5D

game engines, rather than real 3D game engines.

Later in the late 1990’s, real 3D engines that could handle arbitrary geometry configurations

appeared, such as the Quake engine11 and the Unreal engine.12 They did not have 2.5D engines’

limitations and for the first time provided support for 3D hardware acceleration. The characters

were full 3D models, rather than 2D billboards.

Successors of the Quake engine were named ID tech. Newer ID tech as well as the Unreal

Engines support more graphical features, realistic physics and better artificial intelligence (AI) for

enemies and AI multiplayer characters (bots).

While the ID tech game engines were dominant among games in the 1990’s, the Unreal engines

became more popular, starting in the year 2000. The first and second most popular game genres

using third party game engines were first person shooters and role playing games, respectively.

More important things for game engines in recent history include not only the feature support, but

also the support for game consoles, PCs and mobile devices together. In particular, the share of

mobile devices increases as they become faster and further have better 3D hardware acceleration.

Due to the continuing increase in complexity, more and more modules of modern game engines

are developed by third parties as individual products (middleware). It is not common anymore

that the entire game engine is developed only by one single company. A few examples of third

9 ID software. Doom Engine. 1993.
10 Silverman, Ken. Build Engine. 3D Realms: 1997.
11 ID Software. Quake Engine. 1996. http://www.idsoftware.com/games/quake/quake.
12 EPIC MEGAGAMES. Unreal Game Engine. http://www.unrealengine.com/.

18 Chapter 1 Introduction

party software are Speed-tree13, Havok14, Fork Particle15, the Simul Weather SDK16 and the City

Engine17.

The term “Game Engine” is defined as a software framework that includes all modules required

for producing a video game. One of the modules of game engines is the so called “3D engine” in

case of a 3D game and “2D engine” in case of a 2D game, respectively.

Different from the term “Game Engine”, “3D engine” is not strictly defined. In history, often

entire game engines have also been entitled as “3D engine”, even if they are very complex.

Recent 3D engines can accommodate multiple applications and can take care of consistencies

between the multiple applications such as the view-point and view-angle synchronization so that

the visualized CG images generated by the multiple applications are properly combined.

In case of state of the art 3D engines, such as the Nebula 3D engine18, as shown in Fig. 1.1,

objects to be visualized are categorized as follows.

• Terrain

• Static objects

• Skeletal animated objects

• Plants

• Sky and clouds

For each of these objects, an application is embedded into the Nebula 3D engine so that these

objects are consistently combined in 3D very efficiently.

13 SpeedTree. SpeedTree. http://www.speedtree.com/.
14 Havok. Havok Physics. 2000. http://www.havok.com.
15 Fork Particle. Fork Particle. http://www.forkparticle.com.
16 Simul Software Ltd. Simul Weather SDK. 2009. http://www.simul.co.uk/
17 ERSI. City Engine. 2008. http://www.esri.com/software/cityengine/.
18 RadonLabs. Nebula Device. http://sourceforge.net/projects/nebuladevice/.

Chapter 1 Introduction 19

Figure 1.1 3D Engine: Example of a screenshot of DrakenSang, a game by BigPoint/RadonLabs based

on the Nebula Device game engine. Screenshot by courtesy of Bernd Beyreuther, head of game-production

at BigPoint/RadonLabs
19

.

For a modern video game, the entire process until a game ends up in the stores has become quite

complex and is split up into the following steps:

• Game Development

o Game Design (game type, storyline, character design, level design)

o Software development (Research and Development, game engine, tools, web portal)

o Graphics (modeling, animating, motion capture, painting textures & backgrounds, web)

o Audio (music composing, sound effects, narration)

• Beta testing phase

• Marketing (TV commercials, internet adverts, getting reviewed by magazines)

• Shipping (via BlueRay, DVD, internet and distributors)

19 BigPoint. BigPoint. 2002. http://www.bigpoint.com.

20 Chapter 1 Introduction

This thesis, focuses on the research part of the software, in particular the 3D graphics algorithms

to be accommodated into the 3D engine. More specifically, this thesis addresses how to improve

methods for visualizing terrain, static objects and skeletal animated objects, which are elements

common to video game contents.

1.2 Related Work

This section reviews the related work to the three topics described in Section 0 as well as an

overview of general CG methods related to 3D engines.

1.2.1 Overview

In CG, many methods have been developed over time. Basic and quite old methods of CG have

been overviewed in Chapter 0. Newer methods relevant to 3D engines are reviewed in this section.

In 3D engines it is important to visualize complex geometries with accurate shading at high

frame-rates. Concerning shading in real-time, particularly shadows are challenging. Conventional

ray tracing based methods have not been suitable in game engines for a long time, as they are too

slow. Therefore, faster techniques such as shadow mapping [1] and shadow volumes [2] have

been used. They can avoid ray tracing and suit well for triangle based visualizations.

Another methods important for 3D engines include techniques that improve conventional bump-

mapping in order to let flat surfaces appear bumpy. Here, parallax occlusion mapping [3], which

was first published in 2004, is an evolution that creates much more realistic bumps than previous

bump-mapping. Rather than just altering the normal vector, parallax occlusion mapping creates a

parallax effect, which lets the bumps on a planar surface appear in 3D. Furthermore, it provides

self-shadows and correct silhouettes in object borders on the screen.

Recent methods related to animation evolve existing methods to realistic and physically correct

skin deformations, proper cloth simulation [4], or hair animation and visualization. Another work

in the area of animation focuses on creating realistic character locomotion animations

procedurally. In the area of visualization, splat [5] and voxel-based [6] representations are

researched as an alternative to visualizing geometries by triangles. For achieving faster

visualizations, level of detail (LOD) was researched, where methods such as HLOD [7] and Far

Voxels [8] were proposed to visualize large and complex scenes. To achieve proper lighting

without using pre-computations, global illumination in real time was developed by Crassin et al

[9]. The computation of global illumination is already complex, even for state of the art ray-

tracing methods; therefore, achieving real-time performance is a challenge.

1.2.2 Terrain

In the scene, terrain is a ground surface on which characters, buildings or other static objects can

be placed. It is one of the most crucial parts of a video game and virtual 3D worlds in general. The

research of terrain visualization for CG applications mainly started in 1996 with height-map based

Chapter 1 Introduction 21

terrains using continuous level of detail [10] and roaming [11]. Over time, as computers evolved,

and as hardware acceleration appeared, methods were changed. Nowadays, research focuses not

only on improving height map based methods, but also volume data based methods to allow

terrain features such as overhangs, caves and arches. One of the most successful movies,

“Avatar”20, might be the best example for impressive volumetric landscapes, where a fantasy

world called Pandora, with large floating rocks is one of the main elements in that movie.

In video games, height-map based methods were commonly used for rendering terrain [11] [12].

While height-map based approaches were largely sufficient for featuring isometric perspective

games such as real-time tactics, first person games 21 demand more interesting landscapes,

including concavities and overhangs. Therefore, recently height-maps were step-by-step replaced

by volumetric terrains such as Pandromeda22, [13], [14] so that the above mentioned interesting

terrain landscapes can be generated.

The creation of these complicated, and thus interesting, volumetric terrains necessary for long-

range walk-through environments can either be achieved by manual operations23, or procedural

methods [13], [14]. Manual creation by content creators is expensive in terms of time and

financial cost and thus should be reduced as much as possible.

Procedural methods save time for creators; however, they produce huge amounts of data, which

needs to be stored and loaded again at run-time. To solve this issue, procedural methods need to

be integrated into the video game for generating contents at run-time. Furthermore, video game

players tend to get bored if the same contents are presented each play repeatedly. To avoid

repetitions of the same contents, procedural methods should be able to create new and interesting

contents in each play.

So far, none of the existing methods that can visualize volumetric terrains is able to display run-

time generated procedural terrain. Overcoming this limitation is an important step in the

development though. All existing methods to visualize volumetric terrains require a time

consuming pre-processing step in order to convert the terrain data into a format that is optimal for

the particular method. Therefore, they need to store the temporary generated data on mass-storage

devices. The visualization of procedural volumetric terrain data that is generated on run-time is

still an open area of research that has not been solved yet.

The limitations of existing terrain technologies are briefly summarized as follows:

• Pre-calculation: Existing methods that are able to visualize large volumetric terrains in

real-time require a time consuming pre-processing prior to the visualization. The pre-

processing is required to compute level-of-detail representations of the original high

resolution terrain data. Each method uses its own individual level of detail format.

• Limited terrain size: As existing methods need to apply the pre-processing to the entire

20 Cameron, James. Avatar the movie. Twentieth Century Fox Film Corporation, 2009.
21 First person games are video games where the player sees the scene in ego-perspective. It is equal to seeing through the eyes of the

virtual main character.
22 Pandromeda. http://www.pandromeda.com. 2012.
23 3D-Coat. http://3d-coat.com/. 2012.

22 Chapter 1 Introduction

terrain data, the terrain size is limited by the memory capacity provided by the hardware.

Infinite sized terrains cannot be handled by existing methods.

• Absence in synthetic volumetric terrain generation on the fly: Existing methods do not

achieve both, an automatic volumetric terrain generation and the visualization

simultaneously. There are methods that are able to generate terrain procedurally, and there

are different methods that allow existing data to be visualized in real-time. However,

presently no method exists that allows the dynamic, on-the-fly generation of volumetric

terrain data, in parallel to the visualization.

1.2.3 Static Objects

Traditionally, static objects are visualized using polygon based rendering, which has been more

efficient than point-primitive (splatting) or voxel-based rendering (voxel comes from Volume-

Pixel) over a long period. However, polygonal models are becoming more and more detailed,

leading to dense meshes where each polygon merely covers a few pixels on the screen. Once

polygonal meshes become so dense, results of rendering by using polygons, point primitives, or

voxels do not show significant differences in quality and rendering speed. This means that voxel

and point-based rendering methods gain more importance. The reason for this is that as the

rasterized size of voxels, splats and polygons become similar, rendering a voxel or splat employs

considerably less computation than rendering a polygon.

Previously, an advantage of polygon-based rendering was the ability to save memory by using

repeated textures. Voxel- and splat-based rendering inherently use unique texturing, so there is no

benefit in memory consumption from using repetitive texturing. However, according to a recent

trend to use unique non-repeating textures for each object on the screen (Megatexture

technology24), the memory consumption for polygon-based rendering sharply increases. Therefore,

if this trend continues, the memory consumption of voxel and splat-based rendering becomes

comparable with unique textured polygon rendering.

Voxels are basically three dimensional pixels. Voxels are most commonly used in connection

with volume data. Each voxel represents one atom of a volume data set. First, voxels were mostly

used in visualizing medical scans (such as CT or MRI). Over time, they also found their

application in video games. An early game based on voxels is called Commanche25. They used

voxels to visualize the terrain. At that time, polygon rendering was not hardware accelerated and

therefore quite slow. Voxel graphics provided more details at the same rendering speed.

The founder of one of the most famous game companies, John Carmack, already forecasted the

come-back of voxels in 200826. He explained a technique called sparse voxel octree raycasting

[15] where sparse means that only surface data is stored as voxels – no solid data. On the CPU,

several methods for ray-casting voxel and volume data have already been developed. However,

24 Carmack, John. The Megatexture technology. 2006.

 http://www.team5150.com/~andrew/carmack/johnc_interview_2006_MegaTexture_QandA.html.
25 NovaLogic. Comanche series. 1992. http://en.wikipedia.org/wiki/Comanche_series.
26 Carmack, John. Id Tech 6, Ray Tracing, Consoles, Physics and more. http://www.pcper.com/article.php?aid=532.

Chapter 1 Introduction 23

since the graphic cards became general purpose computation units that can execute common C–

code, a next challenge is voxel ray-casting on the GPU.

Level of detail (LOD) [16] technologies for polygons and voxels and are compared. LOD is

important to accelerate rendering and to decrease the run-time memory consumption. For

polygonal objects, LOD is usually handled as follows. First, a set of polygonal objects with

different levels of detail is created by an artist. Then, at run-time, the proper LOD of the object is

selected according to the view distance from the view-point. Voxels can handle LOD more

efficiently than polygons, because voxel data can be easily down-sampled for representations in

lower details. Therefore, it is not necessary for the artist to design separate models of the same

object for each level of detail because the different levels of detail can be generated automatically.

Another advantage of voxels over polygons is that Boolean operations (consisting of union,

intersection and difference operations) can be applied much easier to voxels than to polygons.

With polygons, complex algorithms are required, and taking care of exceptional cases is needed.

With voxels, the Boolean operation is simply performed per voxel, which is much simpler as it is

very similar to a Boolean value; the voxel is either set or unset, like a Boolean value which is

either 0 or 1. Despite all these advantages of voxels over polygons, it should be noted that

deformations and skeletal animations in real-time still pose a challenge for voxel-based

representations.

Point- and voxel-based rendering are very similar. However, the major difference between voxel-

based rendering and point-based rendering is that voxels occupy a well-defined cubic portion of

volume in space, while point-based methods usually approximate the geometry by 2D splats, such

as in QSplat [5]. Due to the fact that splats are 2D approximations of a 3D object, point-based

algorithms need many special processes (such an adaptive sampling) to be robust and efficient.

Voxel-based algorithms are generally more robust without the need for such exceptions, because a

voxel covers a well-defined cubic portion of space in 3D, rather than a 2D approximation.

In the past, voxel-based methods optimized for sparse surface data used to be applied to the CPU.

After the invention of the GPU and NVIDIA CUDA27, it is possible for the first time to execute

such complex algorithms on the GPU in a parallel fashion. The GPU provides hundreds of single

instruction multiple data (SIMD) units, which allow co-execute algorithms in a highly parallel

manner. So far, the use of the GPU has been very limited, though; e.g. C-like programs using

pointers cannot be executed. This was improved by the development of NVIDIA CUDA. Their

API allows, for the first time, to use the GPU as a real general purpose processor.

However, developing efficient ray-casting methods using the GPU is more than a simple

implementation task. Additional research is required to optimize the performance for the novel

parallel architecture. Furthermore, since the data of large detailed voxel objects consumes a

significant amount of memory, which requires further research on efficient data structures and

memory compression methods [17]. Another issue of existing voxel visualizations is the aliasing

for close geometry. So far, the blocky appearance of voxels close to the camera has not yet been

efficiently solved.

27 NVIDIA. Compute Unified Device Architecture (CUDA). 2008.

24 Chapter 1 Introduction

The limitations of existing methods are summarized as follows:

• Conventional triangle based rasterization as well as splatting based methods do not scale

well for complex scenes in terms of memory consumption and rendering speed due to

overdraw28 . The speed for rasterization is linear, which is not as good as raycasting

methods which provide logarithmic scaling.

• Existing voxel-based raycasting methods are not memory efficient due to their data

structures.

• Triangle based ray-casting methods significantly consume larger memory than other

methods, such as splatting.

Therefore, it can be said, that at present no method can provide low memory consumption and

high computation speed simultaneously.

1.2.4 Skeletal Animation

Animation has been important in CG and visualization ever since. In 1961, the first computer

animation by Edward Zajak named Two-Gyro Gravity-Gradient Attitude Control System29 was

presented, shortly after the history of CG began. Over time, various methods have been developed

to animate virtual characters, where skeletal animations30 of characters that consist of polygons

are most important. To animate them in a smooth manner, the mesh vertices need to be

interpolated between key-frames. Soon after this was first done in a simple manner, advanced

skeletal methods were developed. They allowed the animations to be created in a hierarchically

structured manner, such that not every vertex needs to be animated manually.

In the meantime, skeletal character animation has become one of the major components in most

digital productions, including cinematic productions and interactive applications such as video

games. A challenge in particular is the skin deformation, which is a major component in character

animation.

To animate the deformation, many approaches have been developed over time; e.g. free-form-

deformation (FFD) based techniques over skeletal methods and advanced algorithms, which also

take into account topology of a mesh, physical constraints, and even authentic data from laser-

scans.

28 In complex scenes, many objects occlude each other. Since all objects need to be drawn for rasterization, some regions of the screen

are drawn over multiple times. This occurrence is defined as overdraw.
29 Bell Labs. A Two Gyro Gravity Gradient Altitude Control System. 1961.

 http://en.wikipedia.org/wiki/History_of_computer_animation.
30 Skeletal Animation: The definition of skeletal animation derives from the hierarchic bone structure used in computer graphics,

which is similar or equal to a skeleton. In case that representing an existing skeleton of a real biologic life form is focused, the
term “skeletal” is replaced by “skeleton”.

Chapter 1 Introduction 25

In recent years, the so-called linear blend or matrix skinning [18], also known as skeletal subspace

deformation (SSD), has widely been used for skeletal animation. SSD is the most popular method

among all authoring tools and interactive applications. The key of SSD's success is that it is

simple and well-balanced in terms of quality, speed, and complexity.

On the other hand, SSD is still not perfect, because its deformations expose the well-known

candy-wrapper effect for twisting operations and collapsing geometry while bending. This issue is

very annoying for artists and has inspired many researchers to propose new solutions and

alternative methods. Unfortunately, most of these methods turn out to be not practical, because

these are too complex or demanding to accomplish real-time execution. This is critical for real-

time applications such as video games, which require fast computations. Also in rendering

systems for cinematic productions that do not require real-time, computation speed is an

important and non-negligible factor, because time-consuming computations raise the production

cost of a movie.

To solve the above-mentioned issues of SSD, the following two quaternion based skinning

methods were developed by Ladislav Kavan: Spherical blend skinning (SBS) [19] and Dual

Quaternion Skinning (DQS) [20]. They change the interpolation scheme from matrices to

quaternions or even dual quaternions. This change cannot prevent deformation artifacts

completely, but it successfully avoids effects as collapsing geometry for large bend angles.

Furthermore, they preserve a high computational speed, which is not as high as SSD, though. In

case of quaternion skinning, about 78% of the speed of SSD is achieved, and in case of DQS,

72% the speed of SSD is achieved ([19], [20]). However, for creating complex deformations of a

spine or facial animation for instance, many joints are required. At present, existing skinned

skeletal animation methods suited for use in real-time applications do not provide an efficient way

to simplify this.

Another important issue to be solved for an animation system's success is the ability for adjusting

the degree of freedom of deformation. In this sense, pose-space-deformation (PSD) has made an

important advancement that allows artists to design each pose of an animation individually. PSD,

which is an animation system that is mounted on top of the basic skeletal animation system, uses

the output of the basic skeletal animation system and modifies the output by a post-process.

However, PSD has a significant restriction: if an artist enhances a certain pose – for example by

modeling a joints muscle- or cloth-like deformation behavior – it is not possible to reuse this

particular behavior for any other joint. It needs to be modeled for each character individually.

Existing limitations are summarized as follows:

• Matrix skinning is fast, but exposes deformation artifacts for large bend angles in joints.

• Quaternion Skinning and Dual Quaternion Skinning have smaller artifacts than SSD, but

they are not as fast.

• Existing skeletal animation methods suitable for 3D engines require many control joints

for creating a spine or complex facial animations. They do not provide an efficient way to

26 Chapter 1 Introduction

simplify this task.

• Custom deformations such as muscle behaviors or cloth wrinkles need to be modeled for

each character individually using PSD. Existing methods do not allow re-use of existing

custom deformations for different joints or characters.

1.3 Purpose

As shown in Fig. 1.2, this thesis assumes that the three visualization modules: terrain, static

objects and skeletal animation are embedded into a 3D engine.

The purpose of this thesis is to improve the three main visualization modules.

The specific goals of the three modules are described as follows.

Figure 1.2 Overview: This diagram shows the three main modules and their data connections. The

numbers indicate the chapter in this thesis.

1.3.1 Terrain

The goals for overcoming the limitations described in Section 1.2.2 are as follows. First, the pre-

computation-free visualization of volumetric terrain data should be achieved, because all existing

methods require a pre-computation step prior to the visualization. Second, infinite sized terrain

Chapter 1 Introduction 27

should be achieved, because existing algorithms can visualize only limited sized terrain as they

need to pre-process the entire terrain data. Last, new procedural terrain data should dynamically

be generated on the fly in parallel to the visualization, to allow the visualization infinite sized

terrains, where this is impossible for the conventional methods.

1.3.2 Static Objects

The goals for improving existing methods for visualizing static 3D models with complicated

structures are as follows. Complex voxel scenes should be visualized faster than conventional

splatting methods and conventional triangle based rasterization. The memory consumption should

be lower than the scene’s equivalent triangle mesh, and lower than related voxel based raycasting

methods.

Therefore, highest rendering speed, and lowest memory consumption for visualizing detailed

voxel scenes should be achieved.

1.3.3 Skeletal Animated Objects

The goals for improving existing skeletal animation methods are as follows.

1.3.3.1 Skeletal Animation

Collapsing geometries caused by large bend angles of articulated objects, which could be

observed in matrix skinning (SSD), should be prevented. Faster computation, artifact-free

deformations and more parameters to adjust the deformation compared to quaternion skinning

(QS) and dual QS (DQS) should be achieved. The number of joints for complex skeletons should

be reduced, where fast rendering speed is preserved, and the artifacts are prevented.

1.3.3.2 Pose Dependent Customization

Different from the previously mentioned pose-space-deformation, two kinds of “re-usability”,

which is impossible for existing methods, should be achieved: simple and abstract design of

deformation styles for re-usable deformation behaviors such as muscles bulges or cloth wrinkles,

and applicability to any number of target characters instantly.

1.4 Approach

1.4.1 Terrain

A nested Clip-Box approach is proposed to achieve the goals described in Section 1.3.1 as follows.

Clip-Boxes allow distant terrain geometry to be visualized with low detail, while geometry close

to the view-point is visualized with high detail. A Clip-Box consists of a cubic regular grid of

voxels and its corresponding triangulation. For the visualization, multiple nested Clip-Boxes are

centered about the viewer. To preserve the placement about the viewer over time, their position,

28 Chapter 1 Introduction

their voxel data and their triangulation are updated frequently according to the viewer’s position

changes, concurrently to the visualization.

Since only a small and well-defined region of the entire terrain data around the viewer is required

for the visualization, the entire terrain size can be arbitrary size. It is, therefore, possible to

visualize infinite sized procedural terrains. The procedural method does not need to compute the

entire terrain data. Computing the terrain data within the Clip-Boxes, which surround the viewer,

is sufficient. Namely, nested Clip-Boxes allow infinite sized terrains, because the terrain size is

independent of the small, constant amount of terrain data contained by the Clip-Boxes that is

required for the visualization. Finally, nested Clip-Boxes allow the visualization of arbitrary sized

procedural volumetric terrain data, as the procedural data can be computed concurrent to the

visualization for the required Clip-Boxes, along with the required Clip-Box updates, where

“Procedural” here means “computed by evaluating numerical functions”. Therefore, variations of

the terrain can further be computed instantly.

Concurrent updates along with the visualization are achieved with a two threaded approach: one

thread creates the geometry (geometry thread) and the other thread renders the scene on the screen

(visualization thread). The geometry thread repeatedly updates the geometry of all clip-boxes. It

therefore loops over all Clip-Boxes and serially creates the procedural voxel terrain data, converts

the voxel data into triangles, and smoothes the triangle data. The visualization thread repeatedly

loops over all Clip-Boxes and visualizes the latest triangle data of each.

Nested Clip-Boxes are pre-computation free, because their volumetric terrain data is converted

into polygons immediately concurrent to the visualization.

1.4.2 Static Objects

This thesis proposes a parallel voxel based raycasting approach for visualizing run-length-

encoded (RLE) voxel data sets. The proposed method achieves the visualization by raycasting the

scene in vertical planes that are perpendicular to the ground plane. For each plane, only one ray is

casted into the RLE structure, where the result of each vertical plane is stored in a temporary 2D

image buffer as single column. The temporary buffer is then mapped to the screen for achieving

the final visualization. In addition to only casting one ray per column on the screen, efficient

visibility culling by an extended floating horizon algorithm together with early ray termination are

the main properties to provide a high speed.

Due to visibility culling and early ray termination it is possible to visualize voxel scenes faster

than by using triangle based rasterization or basic splatting.

Due to RLE data compression, lower memory consumptions per element than triangle based

rasterization, triangle based raycasting and related methods for voxel based raycasting methods

are achieved.

The final rendered result is post-processed by a novel image filter that smoothes edges of large

voxels close to the camera. The filter computes smooth and precise opaque edge-preserved results

based on the data in the depth buffer and achieves a higher rendering quality than existing voxel

Chapter 1 Introduction 29

based raycasting methods. The accurate visualization per-pixel due to raycasting provides more

precise results than conventional splatting. Splats are only an approximation of the space they

occupy, while voxels are well defined cubes.

1.4.3 Skeletal Animation

This thesis proposes a spline skinning based approach combined with deformation style.

1.4.3.1 Spline Skinning

The proposed spline skinning is a combination of spline aligned deformations and conventional

SSD. While SSD uses vertex weights to blend simple matrices, spline skinning uses them to blend

multiple splines curves. The deformation for a certain point of the spline is achieved by using the

spline’s Frenet frame.

As spline aligned deformations do not expose artifacts common to SSD, QS and DQS,

deformation artifacts are avoided by spline skinning, where SSD is the most common method for

animation in current 3D engines.

Furthermore, splines can help to simplify complex skeletal animations, such as a spine or facial

animations, by replacing multiple common joints by one spline.

In addition, computations per vertex can almost be reduced to those of SSD by storing a fixed

number of samples per spline-curve in a temporary buffer prior to the main deformation per

vertex on a per frame basis. This buffer containing the spline samples is then used for computing

the deformation. Spline skinning can therefore be computed significantly faster than QS and DQS,

which is used in modern 3D engines, such as the CryEngine3 and Unreal Engine 4.

1.4.3.2 Deformation Styles

To achieve re-usable deformation styles, pose-dependent scaling is applied per spline as post

process to the spline skinning method. To achieve flexible scaling, deformations are defined in an

abstract manner by three scale textures and three scale curves. Once defined, these deformation

styles allow the creation of muscles and other custom deformations that can be applied to any

number of characters simultaneously, because the deformation style is defined independent from

the geometry. Even self-intersections can be prevented by proper modeling of the scale functions,

because the scale functions can adjust the bulging of the deformed geometry depending on the

bend angle.

1.5 Organization

30 Chapter 1 Introduction

This thesis is organized as follows, where Chapters 3 to 5 are illustrated in Fig. 1.2, together with

their publications.

Chapter 2 explains 3D engines and game engines. A brief history of 3D engines and game engines,

reviews of existing engines, and explanations of their components as well as a comparison of their

features are described.

Chapter 3 proposes large scale polygon-based volumetric terrain generation and visualization.

After a survey of related work, and the the proposed method are stated, the experimental results

are presented together with discussions.

Chapter 4 proposes a visualization of static objects by using high resolution voxel volumes. After

a survey of related work and the proposed method are stated, the experimental results are

presented with discussions.

Chapter 5 proposes skeletal animation and deformation styles. After a review of related work and

the proposed combined method are stated, the achieved experimental results are presented with

discussions.

Chapter 6 concludes this thesis. In addition, future work is described.

Chapter 1 Introduction 31

32 Chapter 2 3D Engine

 3D Engine Chapter 2.

2.1 History

In history, the first 3D engines were used to operate with simple wire-frame models, such as the

one used in the game Flight Simulator FS1 in 198031. At that time, 3D engine was not a common

term yet. The next development was the visualization of filled polygons, as in the game Rescue on

Fractalus32.

The first 3D engines that supported perspective correct texture mapping 33 in software at

interactive frame-rates were the 3D engines of Descent34 and the ID Tech1 engine35. ID Tech 1

was used for the game Quake.

Then, with the introduction of 3D hardware acceleration in the years 1996-1998 by mostly 3DFX

voodoo graphics cards, both technologies were supported for the first time, where popular engines

were the Unreal 1 engine36 and the ID Tech 1 & 2 engine. Hardware based rendering is obviously

faster, but since most users at that time did not have an additional hardware accelerator card,

software based rendering was still supported for compatibility reasons. Novel features at that time

were transparent water layers, reflections on the floor, shadows, lens flare effects maps, and

spherical volumetric fog byUnreal Engine.

The following generation, in the years 1998-1999, step by step abandoned software rasterization,

and only hardware accelerated rendering remained. At that time, the novelties of the ID Tech 337

engine were tessellated nurbs surfaces as well as environment-mapped materials.

A major step towards having large game-worlds was video-game Elder Scrolls III Morrowind38

based on the Gamebryo Engine39 in the year 2002. It was one of the first games that provided

large 3D outdoor game environments.

The following generation of engines, such as the CryEngine 140 in 2004, was able for the first time

to visualize large outdoor height-map-based terrains populated with thousands of plants. First, it

was used in the videogame FarCry41. Additional features included shadow mapping [1], high

31 SubLogic Corporation. subLOGIC Flight Simulator. 1980.
32 LucasFilm Games. Rescue on Fractalus. 1984.
33 Perspective correct texture mapping: Unlike affine texture mapping which is fast to compute but shows discontinuities, perspective

correct texture mapping does not expose discontinuities, but is slower to compute.
34 Parallax Software and Interplay. Descent. 1994. http://www.interplay.com/
35 ID Software. ID Tech 1. 1993.
36 EPIC MEGAGAMES. Unreal Game Engine. http://www.unrealengine.com/.
37 ID Software. ID Tech 3. 1993.
38 Ubisoft. The Elder Scrolls III: Morrowind. Bethesda Game Studios, 2002. http://morrowind.de.ubi.com/.
39 Gamebase USA & Gamebase Co., Ltd. Gamebryo Engine. 1997. http://www.gamebryo.com/
40 CryTek. CryENGINE 1. 2006. http://www.crytek.com/cryengine/cryengine1/overview
41 CryTek. FarCry. 2004. http://www.crytek.com/games/far-cry/overview

Chapter 2 3D Engine 33

quality water rendering, bump mapping and efficient use of level of detail. The ID Tech 442

engine that appeared in the same year for the first time used shadow volumes [2]. Shadow

volumes provide a better quality but are more complex and use more memory bandwidth.

Remarkable features of the CryEngine 243 in the following generation in 2007, were volumetric

voxel-based terrains, screen-space ambient occlusion [21], parallax occlusion mapping [3], light

beams and light shafts, motion blur, depth of field, high dynamic range lighting, subsurface

scattering and ambient illumination based on real time ambient maps similar to [22] .

In 2009, CryEngine 344 was released. Its new features include approximate global illumination

using light propagation volumes, irradiance volumes to give color to reflected light, particles that

can receive shadows, hardware tessellation, local approximated ray traced reflections, deferred

lighting and 3D water. Another novel technology, called mega-texturing [23], was introduced by

the ID Tech 5 engine [23].

The feature of the latest engines presented in 2012, such as the Unreal 4 Engine45, is voxel cone

tracing for pre-computation free global illumination [9].

2.2 3D engine in Game Engine

2.2.1 Game Engine

2.2.1.1 Overview

The software system of a game, which sits on top of the 3D engine, is called a game engine,

which includes a 2D, 2.5D or 3D engine. A game engine consists of multiple components, which

are overviewed in Fig. 2.1. The main purposes of a game engine are as follows:

• Re-usability: A game engine allows speeding up the development of a game significantly.

It provides the major functionality required for most of the games. Therefore, the

development cost can be minimized.

• Portability: Often, game engines support multiple platforms, such as PC, consoles and

mobile devices. Therefore, by using a game engine, the developed game becomes

available on multiple platforms at the same time.

The core components are game logic, graphics engine, mass storage access ((I/O), sound,

graphical user interface (GUI) and collision detection.

42 ID Software. ID Tech 4. 1993.
43 CryTek. CryENGINE 2. 2007. http://www.crytek.com/cryengine/cryengine2/overview
44 CryTek. CryENGINE 3. 2009. http://www.crytek.com/cryengine/cryengine3/overview
45 EPIC MEGAGAMES. Unreal Game Engine. http://www.unrealengine.com/

34 Chapter 2 3D Engine

Figure 2.1 Overview of Game Engine and 3D Engine: black triangle: modules explored by this

thesis.

Additional components are resource management, physics, network, scripting, scene graph,

artificial intelligence (AI), streaming, procedural content creation and a movie player.

2.2.1.2 Core components

Graphics Engine

This part is responsible to visualize the game graphics. It is the main focus of this thesis.

In-Out (I/O)

The I/O component is required to allow the data access to mass storage devices such as the hard-

disk or DVD ROM as well as LAN and WAN.

Sound

Sound is required for sound effects, background music and narration.

Game Logic

Chapter 2 3D Engine 35

Game logic is responsible for connecting and managing the other game modules, which means

controlling the components and exchanging the information between them.

Graphical User Interface (GUI)

The GUI is required for all types of in-game menus.

Collision Detection

Collision detection is required for the interaction between players, the environment and non-

player characters (NPCs).

2.3 3D Engine Structure and Functions

A 3D engine solves the visualization task of a game or game engine. A 3D engine uses 3D

geometry data as input and visualizes the scene according to changes in the view-point and global

camera parameters in real-time. The parameters are given by the game engine and usually depend

on user input.

36 Chapter 2 3D Engine

Figure 2.2 General 3D engine Overview: This diagram shows the render flow of a common 3D engine

including additional post processing modules in a simplified manner. The black triangle marks modules

correspond to this thesis’ chapters 3 to 5.

A simplified visualization flow of a typical 3D engine is shown in Fig. 2.2. Multiple passes are

required to achieve the final result. The final result is hereby the color buffer, which is displayed

on the screen. The attached Z-buffer or depth-buffer is used to handle occlusions of opaque

surfaces.

The rendering passes are categorized into three general passes: background pass, main pass and

post-processing passes. Terrain, static geometry and animated geometry are included in sub-

passes of the main pass. Each pass corresponds to one module. As identical camera parameters

are used for each pass, all modules share the same view-point, same view angle and camera

orientation, same focal length, same field of view and the same rendering resolution.

The function of each pass is described in the following.

Chapter 2 3D Engine 37

2.3.1 Background Pass

The background pass sets the background and initializes the depth-buffer. The types of

backgrounds range from single colored backgrounds over using sky-boxes46 up to simulations of

the atmosphere including day/night cycles, cloud rendering, light scattering and weather

conditions. An example for complex background rendering is the third-party software True Sky47.

Such complex backgrounds that include volumetric lighting effects are also involved in the post-

processing pass.

2.3.2 Main Pass

The main pass visualizes the entire 3D foreground geometry. This thesis’ main pass consists of

three sub-passes: terrain, static objects and animated objects. The result of each sub-pass is

merged with the content of the color buffer and depth buffer.

2.3.3 Post-Processing Pass

The post-processing pass is responsible for mostly shading and camera effects. Options of the

post-processing pass are listed as follows (Fig. 2.2):

• Deferred lighting

• Motion blur

• Depth of Field (DoF)

• Light shafts [24]

• High Dynamic Range lighting (HDR)

• Screen Space Ambient Occlusions (SSAO)

• Shadows

• Reflections

• Refractions

• Fluid effects

• Particle effects

• Fog / Mist / Haze

• Semi-transparent surfaces

46 Valve Software. SkyBox. https://developer.valvesoftware.com/wiki/Skybox_(2D).
47 Simul Software Ltd. Simul Weather SDK. 2009. http://www.simul.co.uk/

38 Chapter 2 3D Engine

2.4 Visualization by 3D Engine

2.4.1 Items to be visualized

Modern 3D engines split the visualization task into the following general types of objects for the

visualization.

• Terrain (Chapter 3)

• Static objects (Chapter 4)

• Skeletal animated objects (Chapter 5)

• Plants (included in Chapter 4)

• Sky and clouds (not included in this thesis)

• GUI (not included in this thesis)

• Combining the modules

These object types are detailed as follows.

Terrain

The terrain provides the foundation of the virtual world. All virtual characters and buildings are

placed on the terrain. Terrain has a unique geometry which is different from characters and

buildings. Terrain geometry is of lower resolution; it is more uniform and changes more smoothly

in space. Therefore terrain rendering algorithms are different from algorithms focusing on

rendering general 3D objects. Terrain is commonly visualized using height-map based methods.

However, also mixed methods using height-map data and volume data exist, such as the one used

in the CryEngine. This thesis aims at achieving the goals described in Section 1.3.1.

Static objects

Static objects include all kinds of static architecture such as buildings, bridges, stones and rocks.

They are usually rendered as static textured polygon meshes. To increase the performance, distant

objects are often rendered with a reduced amount of polygon count, which is called level of detail

(LOD).

However, with the increasing size of game-worlds such as in GTA V48 in which entire cities

including cars and characters are visualized, the amount of static objects is enormous. Therefore,

the detail of each object needs to be reduced dramatically.

Skeletal animated objects

48 RockStar Games. GTA V. 2008. http://www.rockstargames.com.

Chapter 2 3D Engine 39

Skeletal animation is used mostly for animating skeleton based models, such as humans. However,

skeletal animation can be used for any complex animation and deformation of organic models in

general. It is a core component of every video game and therefore 3D engine. A common

middleware for rendering characters has not yet been established. However, it is often coupled

with the physics engine such as Havok for simulating realistic and physically correct animation

behaviors.

Plants

Plants include trees, grass and flowers. They are highly detailed and often animated by simple

swaying motion. While trunks and branches are commonly visualized by solid polygonal objects,

leaves are rendered as two-sided polygons without volume. As most 3D engines have the same

needs for plants and vegetation, a middleware called SpeedTree has evolved in recent years.

SpeedTree is commonly used by newer 3D engines such as previously mentioned Nebula 3D

engine. To make trees more realistic, recent developments use multiple tricks to add realism as

described in GPU Gems [24].

This thesis does not focus on visualizing plants in particular, but plants without motion are

included in static objects.

Sky and clouds

Sky and cloud rendering is not researched in this thesis. Both are often rendered using a simple

skybox49, which is basically a textured cube on which distant mountains, sun and clouds can be

painted. Newer technologies simulate day and night cycles, weather as well as volumetric clouds

and light scattering through the clouds. An example is the middleware TrueSky.

GUI

The GUI is used for game menus, but has not yet been standardized. Most games have a custom

menu interface.

2.4.2 Combining multiple modules

3D engines combine each module’s output in any data format (e.g. polygon, voxel) so as to obtain

the final rendering result by utilizing well known depth buffer technology.

49 Software, Valve. SkyBox. https://developer.valvesoftware.com/wiki/Skybox_(2D).

40 Chapter 2 3D Engine

Figure 2.3 Main render passes of general 3D engines: upper row: terrain, middle row: static objects, lower

row: characters; left column: color buffer, right column: depth buffer (bright: close, dark: far).

The way it works is illustrated in Fig. 2.3. The depth buffer stores the depth information for each

pixel in the rendered image. It is, therefore, possible to merge the render results of multiple

modules by applying per pixel visibility checks using the depth buffer. This technology allows to

merge the results from different modules efficiently. The culling is automatically carried out by

the graphics hardware when drawing triangles. This technology is supported by the first 3DFX

Voodoo graphics hardware accelerator cards.

For visualizing each component shown in Fig. 2.3, the same camera parameters are used to

achieve a consistent result of the depth-map. The three modules (terrain, static objects and

characters) store the depth value sequentially to the depth buffer, one after another, so that the

result of merging the terrain, static objects and characters are rendered properly in the color buffer

(right column in Fig. 2.3) without using advanced synchronization technology.

Chapter 2 3D Engine 41

2.5 Module Comparison

2.5.1 General Comparison

In Fig. 2.4 the differences between the proposed modules and corresponding modules in

conventional engines are illustrated. The major modules for each engine, the proposed and the

conventional ones, are completely different from each other as follows:

• While conventional terrain is height-map-based, the proposed is volume-based and

automatically generated.

• While conventional static objects are visualized using triangles, this thesis proposes voxel

based raycasting.

• While conventional skeletal animation is based on matrix skinning this thesis proposes a

spline skinning and deformation styles.

Table 2.1 shows a more thorough comparison to all of the previously introduced state-of-the-art

engines. As shown in the table, the proposed modules provide novel features not present in

existing engines that can solve the limitations of the major 3D engines. Each of the modules is

detailed in the following subsections.

Figure 2.4 Illustrated Comparison

42 Chapter 2 3D Engine

Table 2.1 Module comparison: In the table, “+” indicates that the feature is available and “-“ indicates

that the feature is unavailable. For unknown support the fields are left empty.

2.5.2 Terrain Comparison

Existing engines use manually generated height map or volume terrain. From the 3D engines

investigated in Table 2.1, CryEngine 3 provides the most advanced terrain technology, which

combines voxel based terrain representations with height map based representations. While height

maps solve for common terrain, voxels are used for overhangs, caves and arcs.

The terrain in existing engines is often streamed from a mass storage device or from network.

This limits the size of the terrain and, as a consequence, the size of the virtual environment, which

is based on the local storage device and the time artists spent for its creation.

In the proposed terrain module, the terrain is entirely volume based and created automatically on

run-time according to the user-defined parameters. This means that caved terrains with overhangs

Chapter 2 3D Engine 43

and arches can be generated at large size without much effort. Furthermore, modifying parameters

allows design variations to be applied easily for generating new and interesting terrains. The size

of the terrain that can be generated is only limited by the numerical precision, not by the size of

the storage device.

2.5.3 Static Objects Comparison

Existing 3D engines use triangles to represent static geometry, as can be seen by the comparison

in Table 2.1. Important to display many objects with triangles is the use of level-of-detail. Here,

CryEngine 3 is the most advanced engine so far. It is able to display a large amount of objects by

rendering distant objects with a fewer triangles than objects close to the camera.

Triangle based rasterization works well to a certain degree. However, once the number of objects

increases significantly, ray casting could outperform rasterization, because raycasting can handle

occlusions very well, while conventional rasterization could lead to heavy overdraw. More

precisely, the complexity of rasterization is linear to the number of rendered triangles T: O(T).

The proposed method by this thesis is based on voxel raycasting. Voxel based raycasting scales

logarithmic to the number of voxels V in the scene for raycasting: O(Log (V)). Another

significant issue is the fact that voxel-based objects can store high, evenly distributed details more

compactly compared to polygon-based objects. The reason is that voxels combine position and

material information. Triangle-based rasterization uses textures, which are addressed with texture

coordinates for each triangle. Furthermore, vertex coordinates need to be stored along with the

triangles as well, which both gets significant for detailed geometry.

2.5.4 Skeletal Animation Comparison

Conventional 3D engines used matrix skinning for performing the skeletal animation. Matrix

skinning is fast and simple – however - it exhibits significant deformation artifacts for strong

bending operations. To overcome these limitations, dual quaternion skinning is used by the latest

3D engines, such as CryEngine 3 (Table 2.1).

Compared to matrix skinning, also the proposed spline skinning algorithm can solve the

deformation limitation, as spline based deformations are free from artifacts. While the dual

quaternion skinning can solve for collapsing geometry in strongly bent regions, it does not

provide as many deformation parameters and same speed as spline skinning. Depending on the

purpose, one spline can cover multiple common joints at once and therefore simplify the skeleton

significantly.

In addition to spline skinning, a deformation styles method is proposed. It allows to model

abstract deformation styles like muscle, metal, or cloth-like deformations. These abstract designs

can be applied immediately to all characters at once. The deformation styles method can be

attached to the spline skinning method as a post-process.

44 Chapter 2 3D Engine

2.6 Conclusion

The proposed three modules for procedural volumetric terrain rendering, rendering of large

complex static objects and for skinned skeletal animation with deformation styles can solve

existing limitations and provide additional features. As a result of different comparisons, it turns

out that the CryEngine3 is the most advanced game engine at this point.This thesis assumes that

the CryEngine 3 is the 3D engine, in which the three modules explored in Chapter 3 to Chapter 5

are embedded.

Chapter 3 Terrain 45

 Terrain Chapter 3.

3.1 Goals

This chapter proposes a visualization algorithm that can overcome the limitations of existing

methods. The goals are summarized as follows.

• Unlimited Terrain Size: The proposed method should be able to handle arbitrary terrain

sizes, without the need to store any data on mass media devices.

• Pre-computation Free: Different from existing methods, pre-computations of the entire

terrain data should not be required, as this would not allow unlimited sized terrains. In

addition, the terrain data and geometry should immediately be generated.

• Generation of Procedural Volumetric Terrain Data on the Fly: The proposed method

should allow the generation of terrain data on the fly. The data should not be stored on

mass storage devices etc. The data should be synthesized on run-time, in parallel to the

visualization. This saves time for the artist and allows quick changes between multiple

terrains.

3.2 Related Work

3.2.1 Procedural Terrain Generation

In games, procedural terrain generation has already been used. An example of this is the

successful video game “The Elder Scrolls II: Daggerfall”, by Bethesda Software. A massive sized

terrain (a flat map, no height information) was one of the main elements of this game. They did

not use procedural volumetric terrain for their approach; that is why this is only partially related

work.

In academia, procedural terrains can be found as well. Prusinkiewicz developed a method for

creating fractal height-map based terrains [25]. More advanced method was developed by

Peytavie et al [14]. They proposed an algorithm to automatically generate large volumetric

terrains with caves and overhangs. Their first one did not solve for volumetric terrains. Their

second method uses volume data for creating the terrain, but their method does not generate the

terrain in parallel to the visualization, and it does not visualize the terrain in real-time. Therefore,

it cannot achieve the visualization of large volumetric terrains in real-time.

46 Chapter 3 Terrain

In other areas, non-game and non-academic, procedural terrain generation was developed as well.

Terragen50 allows the generation of arbitrary height-map based terrains. In Pandromeda51, height-

map based terrains as well as volumetric terrains can be generated. In both Terragen and

Pandromeda a user can freely choose a terrain function. Both methods focus on rendering the

terrain offline. They cannot visualize volumetric terrain in real-time.

A method that generates a volumetric terrain for the visualization in real-time is the NVidia

Cascades Demo [13], whose terrain function is fixed to Perlin Noise52. They create the terrain in a

pre-processing step. They cannot generate procedural terrains in parallel to the visualization.

Therefore, they cannot visualize terrains that require more memory than physically available.

Summary: All related methods create the terrain as an offline process, even though they support

terrain visualization in real-time as in [13]. However, at present there is no algorithm that can

achieve the dynamic, on-the-fly generation of procedural volume data in parallel to the

visualization process.

3.2.2 Polygonal Visualization of Volumetric Terrains

Since the proposed algorithm visualizes the terrain volume data as polygonal mesh, methods that

visualize large and detailed objects which consist of either polygonal mesh data or opaque volume

data are also reviewed.

One published algorithm 53 represents the terrain by a 512×512×64 voxel grid and visualizes by

using multi-resolution ray casting. They focus only on visualizing height-map based terrain and

do not show any examples for volume based terrains. Furthermore, they pre-process the entire

terrain data and store it in a special format prior to the visualization. They do not support updates

on run-time. Therefore, they cannot visualize arbitrary sized volumetric terrains in real-time.

Another related method is the visualization of large iso-surfaces from volume data. An iso surface

represents the boundary surface inside a volume data between values less than the iso value and

the ones greater than the iso value. Commonly, the iso value is a user defined constant. Gregorski

et al [26] present a method that recursively subdivides the scene into diamonds based on pre-

calculated error-values to visualize large iso surfaces. The method is basically a three-dimensional

extension of the height-map based terrain rendering method that is known as ROAM [11]; that

method converts the input data into a special format in a pre-processing step. Their method

requires intensive pre-computation and therefore cannot solve for updates in real-time.

For visualizing large meshes, several methods have been invented. Most of them, such as [7] and

[27], cluster the input mesh in multi-resolution shapes, such as cuboids or tetrahedrons. These

have to be created in a pre-computation step for the dynamic assembly at run-time. The approach

presented by Lindstrom [28] is similar. His method clusters vertices in a hierarchical fashion to

50 Fairclough, Matt. Terragen. 2000. http://www.terradreams.de.
51 Pandromeda. http://www.pandromeda.com. 2012.

52 Perlin, Ken. Perlin Noise http://en.wikipedia.org/wiki/Perlin_noise. 2012.
53 Visualization Lab, Center for Visual Computing, SUNY Stony Brook. Voxel-Based Flight Simulation

 http://www.cs.sunysb.edu/~vislab/projects/flight/. 1997.

Chapter 3 Terrain 47

achieve the view-dependent LOD. His method requires intensive pre-computation and therefore

cannot solve for updates in real-time.

Other related approaches propose the usage of point sprites, also known as splats, for representing

the scene [8], [5]. In [8], a combination of splats and polygons is used, where the polygons solve

the geometry near the viewpoint, and splats are used for distant geometry. Their method requires

intensive pre-computation and therefore cannot solve for updates in real-time.

A method that utilizes an LOD structure, which is similar to the proposed method, is called GoLD

[29], where the mesh resolution is continuously reduced according to distance by switching

among several pre-computed detail levels of the initial mesh. The LOD’s are computed by vertex

removal in order to enable a smooth transition by geo-morphing. Their method requires intensive

pre-computation and does not support dynamic generated terrain data.

Video games such as the CryEngine 3 do not reveal their method used for visualizing volumetric

terrains. However, a known limitation of their method is that it does not allow the entire large

terrain to be represented as voxel landscape. They use local, manually designed voxel boxes to

visualize overhangs and caves. The height map based terrain is marked out in those areas for

avoiding interferences.

As for the related work in general, including CryEngine 3 and the methods [5] [7] [8] [27] [28]

[29], none of them suits for visualizing large, on-the-fly generated volumetric terrain data. All of

the aforementioned approaches require intensive preprocessing of the full data set prior to

visualization, and they also have to store the complete terrain data to be visualized. Besides the

large amount of resources necessary during preprocessing of polygon or volume data as in [8] to

create the run-time structure, it is clear that the amount of data generated obviates the application

of large walk-through ranges.

3.3 Proposed Method

To solve the limitations of existing algorithms a method based on nested Clip-Boxes is proposed.

Nested Clip-Boxes are an evolution of nested geometry clip-maps, which are used for height-map

based terrains. Rather than nesting 2D geometry maps, multiple 3D Clip-Boxes are nested in a

concentric manner about the viewer. To preserve the concentric nesting while the viewer moves,

frequent Clip-Box updates are performed in parallel to the visualization. A Clip-Box consists of a

cubic regular grid of voxels and the corresponding triangulation. For performing a Clip-Box

update, the following two general steps are performed. First, the procedural terrain volume data

for this particular Clip-Box is computed. Second, the volume data is converted into polygons for

the visualization. No pre-computed data is required for these two steps. The proposed Clip-Box

based terrain visualization can, therefore, achieve the pre-computation free visualization of

volumetric terrain data.

Furthermore, only the data present in the Clip-Boxes is required for the visualization; the size of

the entire terrain data is independent of the constant amount of data required for the visualization.

The proposed method can, therefore, achieve the visualization of arbitrary sized terrains. This

48 Chapter 3 Terrain

overcomes the limitation of related methods to visualize terrains that do not fit into the available

physical memory.

Nested Clip-Boxes furthermore provide the ability to generate procedural volume data in parallel

to the visualization. This allows the visualization of synthetic terrains of arbitrary size.

Similar to the proposed approach, other researchers also use functions to generate the terrain (cf.

Pandromeda, [25] and [13]).

The proposed method only requires the terrain functions and their parameters for generating the

underlying volumetric data. Storing the entire volumetric data generated from these functions is

not necessary. Since any arbitrarily explicit function can be chosen for data generation, the walk-

through range and the number of levels are limited only by the parametric range of the function.

Due to the possible large range of variations, there is a rich number of distinct concavities,

overhangs, and other interesting structures that can be generated in run-time. Note, that as

procedural creation of volumetric terrains is already addressed by various methods such as,

Pandromeda, [25], [13], [14], the main focus of this chapter is on generating the visualized terrain

on-the-fly, without relying on any pre-processed data. Different from the proposed method the

above mentioned related works, Pandromeda, [25], [13], [14] are not able to create and update the

terrain data in parallel to the real time visualization.

3.3.1 Overview

The proposed landscape visualization method consists of terrain synthesis and visualization

modules. The synthesis module defines the terrain as three dimensional function defined by the

user. The user can adjust the parameters for the terrain generation and for controlling the

appearance. The visualization system consists of two threads that run in parallel, as shown in Fig.

3.1: A geometry thread and a visualization thread. The geometry thread calculates the procedural

terrain and converts it into triangles for the visualization. The computed data is stored in a buffer

that can be accessed by the visualization thread later on. Mutual exclusion is achieved by using

double buffering (two buffers) for each Clip-Box. The visualization thread then visualizes the data

in real-time as triangle mesh.

Chapter 3 Terrain 49

Figure 3.1 Overview of the terrain visualization module: Using two threads helps to optimally distribute

the rendering and voxel to polygon conversion tasks on modern multi-core-CPUs.

For the visualization module, the CB volume data is created from sampling the procedural terrain

function for each voxel inside the CB. For the hardware accelerated visualization on the GPU, the

volume data is converted into triangle data. The conversion from volume data to triangles is very

similar to visualizing iso-surfaces and can be solved by using one of the conventional algorithms

such as marching cubes [30]. However, as the amount of triangles arising from direct volume data

to polygon conversion is immense, an efficient level-of-detail (LOD) approach needs to be

employed to the proposed system. This is necessary to keep the polygon-count reasonably low for

today’s graphics hardware.

Nested geometry clip-maps, which derive from clip-maps [31], provide all of required features for

the two-dimensional height-map based case. However, they cannot solve the three-dimensional

volume-data based case.

50 Chapter 3 Terrain

Figure 3.2 Evolution from Clip-Map to Clip-Box (CB); Top left: Nested geometry clip-maps [12] Top

right: the Clip-Box based approach as sketch; lower: and the final result as a wire-frame.

Hence, extending the clip-map based terrain visualization approach of Lossaso et.al [12] on

geometry clip-maps to the third dimension by introducing nested Clip-Boxes, as shown in Fig. 3.2,

can solve existing limitations. Clip-Boxes have very similar properties to clip-maps, but are more

complex. Figure 3.3 shows an example of a single Clip-Box (CB). The voxels inside the CB are

computed using a terrain function fTerrain. In contrast to clip-maps, where nested regular grids

suffice to represent the geometry (Fig. 3.2), CB’s carry complex, rapidly changing mesh-

topologies. While each geometry clip-map is represented as a rectangular portion of the

landscape’s height-map, each Clip-Box represents the iso-surface of a cubic portion of the terrain

volume data.

Chapter 3 Terrain 51

Figure 3.3 Clip-Box: Left: the pure Clip-Box geometry; right: CB embedded into the landscape.

The proposed algorithm visualizes the terrain using a two-threaded approach, which is shown as a

diagram in Fig. 3.1. The Geometry Thread with a low update rate creates the geometry from

procedural volume data (“Procedural Data”), existing volume data (“Volume Data”) or height-

map data, which is converted into volume data (“Clip-Box Data”). Next, the volume data is

converted it into polygons (“Convert volume data to polygon data”). For the procedural creation,

a user defined mathematical terrain function is evaluated for each voxel of the volume data in

x,y,z. The result is either 0 (voxel not set) or 1 (voxel set). To smooth the created geometry, a

smoothing step is finally applied (“smoothing”). After the geometry creation is completed, the

created geometry is stored to the one buffer of the Clip Box data that is currently not used for

visualization. To communicate with the “Visualization Thread”, a “Sync Flag” is set. The

visualization thread checks this flag for each frame to be visualized and updates its reference to

the corresponding buffer. After that, the flag is cleared and the geometry thread can continue to

update the next CB.

The visualization thread continuously displays the polygons on the screen with a high update rate.

For the procedural terrain function, which computes the landscape volume-data to be used by the

nested-Clip-Box algorithm, a relatively simple function that produces landscapes complex enough

to prove the efficiency of the proposed method. Since the formula for the terrain generation can

be defined by the user, this thesis does not focus on inventing a novel formula.

Section 3.5.3 presents some examples of functions, which are used for the experiments.

3.3.2 Differences between the proposed method and Previous Work

 The proposed method is basically and extended and improved version of the original version by

Lossaso et.al [12] on geometry clip-maps. The extensions and improvements are summarized as

follows, where the following summary is detailed in Section 3.4:.

• Different from clip-maps and geometry clip-maps, the proposed method is based on CB’s.

52 Chapter 3 Terrain

CB’s are the three-dimensional extension of geometry clip-maps.

o CB’s are significantly more complex, because the topology of their geometry is

arbitrary. Different from clip-maps, which are based on height-maps, CB’s are

based on volume data.

o In case of geometry clip-maps, only regular girds are required. Clip-maps can

therefore, re-use the entire geometry, while the geometry of Clip-Boxes needs to be

updated according to changes in the view point.

o The proposed method needs to group triangles for efficient rendering and to smooth

the mesh generated from volume data to avoid blocky appearances.

• Different from geometry clip-maps, which apply additional procedural details only as a

height-map, the proposed method applies them along the normal vector of the generated

mesh, which can be any direction.

• Different from geometry clip-maps, which are limited in terms of procedural details for

the global height-map data, the proposed method focuses on generating the entire

volumetric terrain procedurally.

3.4 Clip-Box Algorithm

The proposed nested Clip-Box algorithm utilizes a simple and efficient structure to represent the

terrain mesh. Similar to [12], which caches the terrain geometry in a set of nested regular grids,

the proposed method caches the geometry in a set of nested Clip-Boxes (Fig. 3.2). Once the

viewpoint changes, all Clip-Box positions are updated incrementally to preserve the concentric

LOD structure.

The algorithm uses the two threads shown in Fig. 3.1 to handle the Clip Box updates and

visualization. The geometry thread converts the input volume data into polygons for each Clip-

Box. The input data can be generated from procedural terrain volume data, existing volume data

or height-map data, which is converted into volume data. The result is converted into triangle data,

which is smoothed to remove its blockiness. The geometry thread then informs the visualization

thread that new geometry data is available by setting a flag. If the flag is set, the visualization

thread stop its next iteration and update its reference to the new geometry data. The geometry

thread processes all Clip Boxes in a loop.

For the visualization thread, it contains a loop over all Clip-Boxes. The loop processes each Clip

Box and visualizes the contained triangles. The visualization of the triangles is performed in the

inner loop. For each Clip-Box, only triangles that do not lie inside the next inner Clip Box are

visualized to achieve the desired level of detail structure.

Chapter 3 Terrain 53

3.4.1 Clip-Box

A Clip-Box (CB) is defined as the polygonal conversion of a cubic portion of the entire terrain’s

volume data. Figure 3.3 clarifies where a single CB is shown in the left image, where the right

image shows the CB embedded into the surrounding landscape. As opposed to clip-maps [12],

which preserve simple regular grids with almost constant complexity over time, CBs significantly

change their complexity as they are shifted through the volume data.

3.4.2 Data Structure

For each CB, 8-bit volume data is stored, where each voxel is either set (opaque) or unset

(transparent). The polygon data created from the volume data consists of triangle strips, where

each vertex inside the strip carries x- y- and z- coordinates as well as a normal vector. For the

conversion, each voxel is considered as a cube with six surfaces and eight shared vertices. Two

triangles form each of the six surfaces of a voxel.

In addition to these two structures, adjacency information for each voxel to speed up the voxel-to-

polygon conversion process is stored. The links (32-bit pointers) that can be seen in Fig. 3.4 are

utilized as follows:

• Voxel to vertex. Required for inserting a new vertex. The link is used to check whether a

vertex has already been created for the specific voxel.

• Vertex to vertex. Required for quick smoothing and to link adjacent voxel’s vertex. Each

vertex has a list of references to at most 6 connected vertices.

• Surface to surface. Required for seeking triangle-strips. Each surface refers to all

neighboring surfaces.

• Surface to vertex. Required to access vertices for rendering each surface.

• Vertex to surface. Required for connecting new surfaces. The reference also helps to add

the surface-to-surface connections instantly.

54 Chapter 3 Terrain

Figure 3.4 Adjacency information between surfaces, vertices and voxels.

3.4.3 Procedural Volume-Data Creation

To generate complex terrains, a basic procedural volumetric method, constructive solid geometry

(CSG) operations, is employed. CSG is applied to the volume data as shown in Fig. 3.5 to achieve

the desired result. In general, multiple simple shape elements are procedurally added and

subtracted from the empty voxel-volume using Boolean operations to create complex landscapes

for testing purposes. The required parameters, size and position of each shape element, are

generated at random within a user-defined range.

Chapter 3 Terrain 55

Figure 3.5 Terrain synthesis: based on CSG (constructive solid geometry) and Boolean

operations.

The presented approach is similar to [13], which requires time consuming pre-processing

computations; the only difference is that the proposed method computes on-the-fly only the

terrain portions contained by the ClipBoxes rather than pre-computing the entire terrain.

3.4.4 Volume-Data to Polygon Conversion

Concerning the required basic conversion from volume data to polygons, numerous algorithms

are available (e.g. [30], [32] or [33]). However, as mentioned earlier, since also LOD has to be

employed, these three related algorithms are not directly applicable. In addition, it is necessary to

take care of the following two issues: first, how to remove gaps present in LOD boundaries

efficiently (Fig. 3.6) and second, how to achieve a fast conversion.

Marching cubes [30] and marching tetrahedra [32] achieve a fast and high quality conversion

from volume data to polygons. However, they complicate the welding process for the two LOD

boundaries, and also generating adjacency information between vertices gets more difficult.

This thesis solves the gap problem at LOD boundaries by snapping the outer boundary vertices of

one LOD to the next higher LOD’s inner boundary’s vertices, as depicted in Fig. 3.7. The upper

half of Fig. 3.7 shows the original result, the lower half shows the seamless result. The vertices of

the inner LOD (LOD 0 in Fig. 3.7) are snapped to the next higher LOD’s boundary (LOD 1). The

vertices are snapped to boundary vertices of LOD 1 or to middle points between these vertices.

The fast conversion is achieved by using an efficient pointer structure.

56 Chapter 3 Terrain

Figure 3.6 Clip-Box connectivity: A simple method (left) yields an erroneous gap, while the improved

version (right) solves this problem

Figure 3.7 Seamless connections by improved method.

Chapter 3 Terrain 57

.

Figure 3.8 Voxel to polygon conversion: Surface creation in the 2D case.

Figure 3.9 Geometry-processing: The four images show the proposed steps to process the initial mesh: (1)

direct conversion from volume data (2) smoothed (3) surface subdivision (4) synthetic details.

The volume data used in this thesis is binary: each voxel is either set or unset. A simple sketch is

shown in Fig. 3.8, which demonstrates the voxel-to-polygon conversion for the 2D cases. In case

of 2D, a surface is created. In case of 3D, the z-direction is also checked. If the values of the voxel

and its neighbors in the x (horizontal) or y (vertical) direction are different surfaces are created. In

case of 3D, each voxel is defined as a cube with six quadrilateral surfaces. This allows to connect

the geometry of bounding LOD levels efficiently without seams (Fig. 3.6) by further enabling the

fast creation of adjacency information. The drawback of this approach is obviously a blocky result

of the initial polygonal conversion (Fig. 3.9, image 1). This is solved by geometry smoothing in a

58 Chapter 3 Terrain

post-processing step (Fig. 3.9Fig. 3.8, image 2). To weld two LOD levels, the conversion

algorithm processes all voxels present in the boundary between two nested CB’s as previously

explained.

3.4.5 Nesting

Nesting is required by the proposed algorithm to achieve LOD, which helps to reduce the number

of triangles to be renewed. The LOD and nesting are shown in Fig. 3.2. The scale factor for the

Clip-Boxes increases exponentially by the power of two, while the number of voxels contained by

each Clip-Box remains constant. For example, the size of the innermost CB (CB-1)is 100 �100 � 100 voxels, the size of the second innermost CB (CB-2) is 200 � 200 � 200 and so on;

however, the number of voxels contained by each CB is constantly 1003. This means the voxel

size for CB-1 is one, the voxel size for CB-2 is two, four for CB-3 and so forth. This can be seen

in Fig. 3.2. For each CB, all geometry that overlaps with the next inner CB is spared from

rendering.

 It is also important that all CBs are connected seamlessly without exhibiting gaps at the border

geometry. Gaps occur if the boundaries of two nested CBs are not well connected, as

demonstrated in Fig. 3.6. Therefore, once the creation of a CB is finished, vertices present in the

border are connected properly with the next outer CB to avoid gaps, which welds both Clip-Boxes

together. The connection can be achieved efficiently by exploiting pointers of the data-structure.

There, each vertex is connected to up to six neighbor vertices, as there might be a neighbor vertex

in +x, -x, +y, -y, +z and –z direction.

Chapter 3 Terrain 59

Figure 3.10 Moving the viewpoint: ○ initial point, ●: the next view-point.

3.4.6 Moving the View-Point

In the event that the viewpoint is moved (Fig. 3.10), it is important to verify all Clip-Box

positions in order to preserve the concentric LOD structure. In an ideal case, all Clip-Boxes are

permanently centered about the viewpoint, even if the observer starts moving. However, it is

impossible to update all Clip-Boxes fast enough. Therefore, the inner Clip-Boxes is updated more

frequent than the outer ones, as done in [12]. For example in Fig. 3.10 the viewpoint change from

step 1 to 2 only requires the inner CB to be updated. The outer CB remains at its position, if the

viewpoint change is not significantly large. Moving only the inner CB is possible, as the outer CB

accommodates all the geometry enclosed by its volume and can hence fill the gap caused by the

displacement of the inner CB. Another advantage of this approach is that the number of displayed

triangles can by dynamically adjusted by omitting the innermost Clip-Boxes from rendering.

To minimize the amount of procedural volume data to be computed newly in the event of a Clip-

Box-update, the previously computed data is cached and only differential updates (Fig. 3.11) are

performed on the fly, where the updated portions are referred to as newly computed. After the Clip-

Box (CB) is moved, most of the volume data can be reused and only few portions need to be newly

60 Chapter 3 Terrain

computed by the procedural terrain generation algorithm. The update only includes volume data, but it

does not include pointers, vertices or quad surfaces. These are all re-computed from scratch after

updating the volume data. Caching of the generated geometry is more complex and left for future

work.

Figure 3.11 Caching volume data

3.4.7 Geometry Post-Processing

After the surfaces are obtained, smoothing by vertex averaging is applied so that very blocky

structures after the initial conversion are significantly suppressed in the mesh. Figure 3.9 shows

the difference between an image without smoothing (image 1) and with smoothing (image 2),

where image 1 is very blocky and image 2 is very smooth.

 In the event that a high update rate for inner CB’s near the viewpoint is needed, the proposed

algorithm enables fast creation of Clip-Box geometry from surface subdivision rather than using

the more complex extraction from volume data. For surface subdivision, the existing triangle

mesh of a CB is used, and each triangle is subdivided into two triangles. As shown in Fig. 3.12,

for each vertex, three additional vertices are inserted so that the regular grid structure of the CB

mesh is preserved as much as possible. This is significantly faster than generating volume data

and converting the volume data to triangles. Figure 3.13 shows the result of creating the CBs

from four different LODs, where image 1 shows the original, image 2 shows the innermost CB

created from surface subdivision and additional fractal details by random midpoint displacement,

image 3 shows the two innermost CBs created from surface subdivision and additional fractal

details and image 4 shows the three innermost CBs created from surface subdivision.

Chapter 3 Terrain 61

Figure 3.12 Triangle subdivision. Upper: adding vertices (white circles), lower: subdivision example

Figure 3.13 Fractal details: Image 1: no fractal details. Image 2: fractal details for the innermost CB.

Image 3: Fractal details for the two innermost CBs. Image 4: Fractal details for the three innermost CBs.

62 Chapter 3 Terrain

To make the generated terrain look more interesting, another post-processing is performed.

Synthetic details are generated by random midpoint displacement [25], whose effect can be seen

in Fig. 3.9’s images, images 3 and 4.

To improve the computing speed, a module to group all surfaces into triangle strips is added,

allowing cache-optimal rendering. This is done by a depth-first search, utilizing the surface-to-

surface connectivity information.

In case of creating many CB’s from polygon subdivision rather than volume data, problems near

voxel patterns that are equal to the ones shown in Fig. 3.14, lower left corner often occur, which

results in affecting the smoothed result. In Fig. 3.14, those critical regions are indicated by a white

circle. To solve this issue, a 2 by 2 pixel filter (lower left in the Fig. 3.14), which detects and

suppresses these patterns, is employed where in Fig. 3.14 the dark and white pixels in the filters

represent darker and brighter colors in the synthesized image, respectively. Specifically, the left 2

by 2 pixel pattern shown in Fig. 3.14 is searched and replaced by the right pattern. The result

(upper-right) indicates that most of the problematic patterns present in the upper-left image can be

successfully eliminated.

Figure 3.14 Smoothing errors and their elimination: Upper-left: Original image with smoothing errors,

Upper-right: Result of smoothing; Lower-left: pattern is replaced by lower right pattern.

3.5 Experimental Results and Discussion

3.5.1 Implementation

The proposed algorithm was implemented by using C++. For the graphics API, OpenGL was

employed. A two-thread approach is used to separate geometry processing from rendering (Fig.

3.1). This approach maps well to the current generation of multi-core processors, as each thread is

able to occupy one core. It is possible to use the CPU core affinity functions of the operating

system to assign each thread to one specific CPU core. In this implementation, affinity

Chapter 3 Terrain 63

management was left to the operating system. The assignment was verified using task manager.

Each thread uses the corresponding CPU core to 100 percent continuously. Load balancing was

not implemented. The task distribution of the two threads is as follows.

Thread one, the Geometry Thread, is in charge of computing the CB’s mesh. This involves

polygon extraction from voxel data, triangle subdivision, mesh smoothing and random midpoint

displacement (Synthetic details).

Thread two, the Rendering Thread, is in charge of rendering all CB meshes correctly by sparing

the triangles of the next smaller CB inside. As it runs in parallel to the first thread, it is necessary

to be aware of the concurrent use of the mesh data. This was solved by implementing a double-

buffer system, where each mesh buffer is assigned to one thread. Then, once a CB update is

completed, the buffers are swapped synchronously.

3.5.2 Immediate Visualization

To demonstrate that the proposed method is pre-computation free, an example terrain consisting

of about 50000 Boolean operations is generated and visualized. The terrain data is evaluated

concurrent to the visualization without using any pre-computation. The result can be seen in Fig.

3.15. The hardware for testing was a dual core Pentium D 3.0 Ghz, equipped with 1GB RAM and

an NVIDIA GeForce 8600 GTS graphics card.

Figure 3.15 Terrain used for Benchmark.

64 Chapter 3 Terrain

Figure 3.16 Terrain visualization from height-map (real data) Puget Sound region in WA, USA.

To further demonstrate that the method is pre-computation free and can be used to visualize

height map based terrains, the height-map in Fig. 3.16 is processed. Here, the height-map serves

as source for the CB volume data. It is converted into volume data instantly. The height-map and

the color-texture are publicly available on the U.S. Geological Survey (USGS) servers54. The

major difference between rendering height-maps by volume based methods and conventional

height-map based methods is the vertical resolution. While the vertical resolution of the proposed

volume based method is reduced with each level of detail, height map based methods, such as

geometry clip-maps, have a constant vertical resolution such as 16 bit integer per height-map

pixel.

3.5.3 Unlimited Terrain Size

To show that the proposed method is able to visualize unlimited sized terrains and further has

application beyond gaming, this section shows its capability to serve as serve as a 3D function

grapher to visualize infinite math functions. The proposed method is able to visualize any

function

 ����: �� → ��, ��, (3.1)

that is, the function input is defined as a three dimensional integer coordinate vector (Euclidian

space), while the output is defined as zero (represented as air in the visualizer) or one (represented

as solid terrain). Results of three generic functions are shown in Fig. 3.17, where images one to

three show this ability.

54 United States Geological Survey, "http://www.usgs.gov," 2012.

Chapter 3 Terrain 65

Figure 3.17 Function plotting and real data: [1] to [3]: three different mathematical functions; [4]

conventional iso surfaces.

In Fig. 3.17, three Boolean functions are visualized: (1) exclusive-or, (2) saw-tooth and (3) sine

curve. The specific functions, which only return true or false, are represented by Eq.(3.2) below:

 ����� , !, "# $ �� 	 &'	!	 &'	"#	(&)	1000 * 357#,�,-.� , !, "# $ �� / ! / "#	(&)	1000 * 500#,�,01� , !, "# $ �234� # / 234�!# / 234�"# * 2# (3.2)

As the evaluation and visualization are done immediately, it is further possible to alter the

function parameters on run-time.

In Fig. 3.17, image 4, the applicability to rendering iso-surfaces [34] is demonstrated. A forest

generated from the well-known bonsai tree data set is shown in image (4). The different levels of

smoothing can clearly be seen, while the amount of smoothing applied was linear to the size of

the CB in order to limit the loss of geometric details. The tree that was used was rescaled to a

resolution of 256
3
 and placed in the landscape 25 times. The tree scene as well as the function plot

scene was rendered with a CB resolution of 192 at about 10-15 fps.

66 Chapter 3 Terrain

3.5.4 Concurrent execution of generation and visualization

To analyze the speed performance of the concurrent generation and visualization approach, two

benchmarks are conducted using procedurally generated volume data. First, a detailed timing of

the algorithm pipeline is measured in Table 3.1. Second, an evaluation of the continuous timing

behavior of a flight lasting 222 seconds through a landscape is shown in Fig. 3.18.

In the first above-mentioned benchmark, the timings for one CB resolution (128) are measured in

detail and compared the results with different CB resolutions. In the test, 5 (CB no. 3 to 7) out of

the 7 CB’s were created from volume-data, whereas the two smallest CB’s (no.1 and 2) were

created from subdivision and enhanced with random mid-point displacement, which is explained

in section 3.4.7. The equivalent size of the visualized data volume is 20483 voxels.

Concerning the timing evaluation, Table 3.1 shows that most of the time is spent for the surface

extraction process (voxels to polygons). The procedural volume data generation requires

relatively less time, which is the result of employing the caching scheme, explained in Section

3.4.6. If caching is switched on, about 80% of a CB’s volume data can be reused during a CB

update, which reduces the average time for the procedural computation from 100ms to about 20

ms. The rendering time for each CB (CB-1 to CB-7) at resolution 128 (upper half) shows that

most time is spent for the innermost CB (CB-1, 161ms), while the outer ones require less time

(CB-7, 39.6ms).

In the lower half of Table 3.1, different CB resolutions are compared. The Geometry Thread is

referred to as Thread 1 and to the Visualization Thread as Thread 2. In Table 3.1, the average

time to update one CB (CB update avg.) can be seen. It is roughly proportional to the number of

processed voxels.

Table 3.1 Performance analysis: In the upper row, update and render times for one CB resolution (128) are

analyzed in detail, while the lower row compares the performance of different CB resolutions.

Chapter 3 Terrain 67

In general, the update frequency for a CB resolution of 128 is sufficient for an interactive

exploration at high quality, but it is not well-suited for a fast fly-through. In this case, either lower

resolutions such as 96 or 64 are suited well, or increasing the number of CBs created from

subdivision can also be helpful, as well as the above mentioned opportunity to reduce the number

of CBs. In many cases, an increased number of CBs created from subdivision combined with

random midpoint displacement might even be desirable. It often looks more appealing and natural

than the initial terrain without using subdivision. In Fig. 3.13 this behavior is shown in four steps,

where each step is equivalent to generating one more CB from subdivision.

In the second performance test, the frame-rate continuity of the proposed method is analyzed.

Often, visualization algorithms using LOD have difficulties to provide a continuous frame rate

because for many methods the geometry updates cause short stalls in rendering, which can be

observed as hic-ups in the frame rate. To confirm that the proposed method does not have this

problem, benchmark data over a longer period of time is recorded, while flying through the

artificial terrain shown in Fig. 3.15. The diagram for the record is shown in Fig. 3.18, in which

the performance results in terms of polygon throughput (Mpoly/s), time per frame (ms) and the

polygon count (in thousand triangles) are shown. Even at polygon-counts around 800k, the

triangle throughput remains continuous at about 20 million triangles per second and does not

reveal major peaks. If the rendering time per frame (time/frame) is further regarded, smooth

changes in proportion to the scene’s complexity (Polygons) can be noticed. The proposed

algorithm, therefore, does not reveal any problems that might occur due to the LOD. The frame-

rate ranged from 25 to 130 frames per second, which is sufficient for interactive applications such

as video games.

In order to measure the rendering quality of the visualized landscapes, the landscape of Fig. 3.15

is analyzed at different Clip-Box resolutions, disabling subdivision and texturing. As a reference,

the highest possible resolution that the hardware was able to handle was chosen: a landscape with

7 Clip-Boxes at a resolution of 192. This is equivalent to visualizing a total data volume of 12288
3

voxels, which would require roughly 210 GB of memory, assuming each voxel is represented by a

single bit. To measure the increased inaccuracy for lower CB resolutions in screen-space, the

renderings of lower Clip-Box resolutions were compared to the reference resolution, as can be

seen in Fig. 3.19. To evaluate the screen-space-error, all images were gray-scaled and each pixel

was marked as erroneous if the difference is more than 20 in a range of 0 to 255, which is

considered to be noticeable, from the reference image (taken at highest resolution).

As shown in Fig. 3.19, the highest CB resolution is compared to with lower resolutions from 64 to

160, where the percentage of erroneous pixels is calculated. The errors range from 3.96% to

20.63%.

The qualitative results show that good quality renderings are achieved if the Clip-Box resolution

is 128 or higher. For lower resolutions, the screen-space error increases significantly and leads to

more inaccuracies, particularly at very distant geometry. Concerning the quality in general, an

asymptotic error behavior is observed, where the error is roughly halved for each increase in the

resolution by 32.

68 Chapter 3 Terrain

Figure 3.18 Continuous performance: for a flight in the landscape in Fig. 3.5. Upper: polygon vs time,

middle: time to visualize one frame vs time, bottom: million polygons per second vs time.

Chapter 3 Terrain 69

Figure 3.19 Screen-space error: Comparing the highest Clip-Box resolution (192) with lower resolutions:

64 (top-most), 96 (2
nd

 top), 128 (third), and 160 (fourth).

70 Chapter 3 Terrain

3.5.5 Demonstration

Results of synthesizing terrains by the proposed method are shown in Fig. 3.20, which

demonstrate a variety of terrains can be visualized. The upper-left image shows a terrain that is

additionally enhanced by shaders for the grass and handcrafted items to demonstrate the

applicability for computer games.

Note that arbitrary 3D terrains such as overhangs, which cannot be generated by conventional

height-map based methods, can be generated.

Figure 3.20 Examples of synthesizing terrain.

Chapter 3 Terrain 71

3.5.6 Limitations

Since the proposed method is based on volume data, the average memory consumption is higher

than conventional height-map based methods such as geometry clip-maps. In general, 3D requires

more memory than 2D.

Regarding the geometry update of a clip box in case that the view-point is moved, this might be

slightly visible in case of low Clip-Box resolutions.

3.6 Conclusion

A nested CB based approach that is able to visualize procedural volumetric terrains with

unlimited size has been proposed. The nested Clip-Box is an evolution of the nested geometry

clip-map, which is used for height-map based terrains. A Clip-Box consists of a cubic regular grid

of voxels and the corresponding triangulation. Nested Clip-Boxes allow the immediate and pre-

computation free visualization of arbitrary sized volume data. Experiments are conducted using

data generated from terrain functions, data from existing volume data sets and height-map data.

Experimental results and discussion are summarized as follows:

• Pre-computation Free: The immediate and pre-computation free visualization of

volumetric terrain data is achieved. This property is proven by the experimental results,

which demonstrate that a Clip-Box can be computed from mathematical functions within

about one second concurrently to the visualization. This includes the computation of new

terrain data on the fly without pre-computations (e.g. accessing to storage devices), which

all methods [5] [7] [8] [27] [28] [29].

• Unlimited Terrain Size: The proposed method can visualize any arbitrary sized terrain.

This is proven by visualizing volumetric terrain data computed from simple mathematical

functions, which are defined in an infinite coordinate range. The results of this

visualization are demonstrated experimentally.

• Concurrent Generation and Visualization of Generation of Procedural Volumetric Terrain

Data on the Fly: It turns out that as soon as the terrain generation updates its data, the

terrain visualization renders the updated data. The related methods cannot achieve this

because they have not the ability.

Future work for improving the proposed method includes re-using the generated triangle data for

reducing the updating time of the CB triangle data and improving the filter mechanism employed

to remove ambiguous voxel patterns in the CB data.

72 Chapter 3 Terrain

Chapter 4 Static Objects 73

 Static Objects Chapter 4.

4.1 Goals

The goal of this chapter is to solve limitations of existing methods for visualizing static objects by

proposing a voxel-based raycasting approach. The goals are summarized as follows:

• Higher computation speed: The proposed approach should be able to visualize better for

complex voxel scenes faster than conventional splatting methods, polygon based

rasterization and voxel based raycasting methods.

• Lower memory consumption: The proposed approach should consume less memory than

related methods for triangle based raycasting

As a summary, the best result of all categories, which are high rendering speeds for complex

scenes and low memory consumption should be achieved.

4.2 Related Work

This section focuses only on voxel related works. The methods are split into three groups:

rendering voxel volume data by using Shear-Warp [35], ray tracing based algorithms and point

based rendering. The most widely used methods are briefly overviewed in each group, and their

key issues are mentioned. Shear-Warp renders RLE volume data in a front to back manner to a

temporary texture. The temporary texture is then mapped to the screen. It has been proven to be

very fast for dense, semi-transparent volume data. However, it requires storing three copies of the

volume data in memory, as the data is run-length-encoded for each x-, y-, and z- axis

independently.

Raytracing methods use tree-like structures such as octrees, KD-trees and bounding volume

hierarchies (BVHs) to compress the voxel data and accelerate the raytracing process. An octree-

based raycaster proposed by Knoll et al. [36] uses a pointer-based octree structure so that large

iso-surfaces can be raycast interactively with high quality. The pointer-based octree structure is

advantageous in that spatial queries can be made very efficiently. However, it needs to store at

least one pointer (usually 4 bytes) for each node, which is more than twice as much as the

memory requirement of position data in typical RLE scenes. As a variant of raytracing methods,

Gigavoxels [37] uses bricks of volume data in combination with octrees to store voxels for

interactive raytracing. The method suits well for raycasting of large, semi-transparent volume data.

Its features include filtering for high quality and streaming on demand from the hard-drive to the

GPU or CPU for handling data sets that do not fit entirely into CPU or GPU memory. However,

Gigavoxels is not optimal for visualizing purely opaque surface data, because this system uses an

74 Chapter 4 Static Objects

uncompressed voxel brick structure, which increases the memory consumption. In GigaVoxels,

smoothing of voxels near the camera is solved by utilizing 3D texture filtering.

One of the most well-known point based rendering methods, Qsplat [5], inspired many other

researchers to propose similar rendering approaches. As an evolution of Qsplat, FarVoxels [8]

improved the basic point-based rendering by introducing a hybrid method that also utilizes

polygonal rendering for geometries close to the viewpoint. However, as these methods employ

either point-based rendering or a combination of point-based and polygonal-based rendering, they

suffer from the disadvantages described in this section, compared with voxel-based rendering.

4.3 Input Data

For the voxel input data, the proposed algorithm has several conventional and therefore not novel,

original or unique data import functions that are necessary to read input data from files and to

convert them into voxel data in a pre-processing step prior to the visualization.

4.3.1 Polygon Data Import

This import function can import Stanford polygon (PLY) format data. The format is specified as

indexed face list. An example for this format is publicly available at their URL55, along with more

details on the specification and its development.

Figure 4.1 Rasterization of a single 2D triangle.

The proposed method accepts only triangulated mesh data. The PLY format supports general

polygons without holes. To convert mesh triangles into voxel data, the vertex positions 56, 57,	58,

of each triangle are converted into the voxel grid coordinate system first (Fig. 4.1). Then linear

interpolation along two of the three edges �56,57# and �56,58# is carried out. The number of

sample points along both edges is defined by the distance between the edges as follows:

 samples $ 8	 ∙ max	�‖57 B 56‖, ‖58 B 56‖#. (4.1)

Next, two interpolated positions along �56,57# and �56,58# are defined as 567 and 568. The final

position is the interpolation between positions 567 and 568. For each position between 567 and 568

corresponding voxel in the three-dimensional voxel-space are determined and set it to opaque

55 PLY - Polygon File Format. http://paulbourke.net/dataformats/ply/.

Chapter 4 Static Objects 75

color. By doing this, each triangle of the input polygon data can be efficiently rasterized. An

example of rasterized result is shown in Fig. 4.2.

Figure 4.2 Rasterization of 3D Polygon Data: Imported result of the Happy Buddha PLY Dataset with

approximately one million polygons.

4.3.2 Volume Data Import

As a source for sample volume data, The Volume Library56 is used, in which various data-sets are

available for free. Since the proposed visualization method focuses on visualizing opaque data

and semi-transparent data sets that derive from medical scans such as MRI (Magnetic Resonance

Imaging) or CT (Computer Tomography) scans, a threshold that determines if a semi-transparent

voxel is rendered opaque or transparent needs to be applied. This threshold is also known as iso-

value. The semi-transparent input data is therefore converted into binary voxel data. The imported

result from the original bonsai dataset of the volume library (Fig. 4.3) can be seen in Fig. 4.4. A

color gradient to emphasize the voxels that represent the trees leaves is applied in addition to the

basic import.

56 The Volume Library. http://www9.informatik.uni-erlangen.de/External/vollib/.

76 Chapter 4 Static Objects

Figure 4.3 MRI Bonsai Data-Set: A screenshot of the original semi-transparent data rendered in

V3, available at The Volume Library.

Chapter 4 Static Objects 77

Figure 4.4 Volume-Data Import: A forest scene created by the voxelized Bonsai data-set.

4.3.3 Procedural Voxel Objects: Trees

A procedural voxel tree generator based on Lindenmayer systems (L-system, [38]) has been

developed to create complex trees with high resolutions. The used algorithm creates a tree based

on branches that consist of 3D voxel spheres of variable size, as shown in Fig. 4.5. The branches

are created by recursively inserting spheres in the middle of two endpoints as shown in that figure.

Additionally, random-midpoint-displacement is applied in order to get a more natural result of the

branch. The entire tree is generated by starting with one branch from the root and then

continuously splitting this branch into two to three smaller branches. Finally inner voxels that are

invisible are removed. This operation is done to reduce the memory of the entire dataset. Figure

4.6 shows the result of trees generated by this method.

78 Chapter 4 Static Objects

Figure 4.5 Tree Generation: The tree is created using spheres, random mid-point displacement and finally

the L-system.

Chapter 4 Static Objects 79

Figure 4.6 Example of Procedural Voxel Trees.

4.4 Proposed Algorithm

The explanation of the algorithm is split in two sections. Section 4.4 explains the algorithm

overview, the proposed approach, the algorithm overview, the pre-processing and the level-of-

detail computation. Section 4.5 elaborate on the visualization, which is the heart of the algorithm.

4.4.1 Overview

As explained in section 4.1, none of the related methods possesses all of the following two

properties: low memory consumption and high rendering performance (fast rendering). Therefore,

the purpose of this research is to find an optimal combination of all of the two properties.

Furthermore, memory consumption can be reduced by not storing the normal vector inside the

voxel data, but recovering the normal as a post-process in screen-space.

80 Chapter 4 Static Objects

 Overall, the following goals should be achieved:

• Significantly lower memory consumption compared to other methods.

• High rendering performance even in complex environments at interactive frame-rates

from arbitrary viewpoints.

• Support for recovering the voxels’ surface normals from the depth buffer.

The proposed approach is based on the so-called “voxel-based forward projection algorithm”

developed by Wright et al. [39], which renders voxel data with lower memory consumption than

the Shear-Warp algorithm. The original voxel-based forward projection algorithm is modified to

deal with completely arbitrary voxel data, as it is done in the unpublished work of Silverman57.

The original forward projection algorithm categorized the data into two groups: terrain, and

objects that are placed on the terrain, such as trees and buildings. Each of these two groups of data

have its own rendering technique. Silverman‘s method and the proposed approach store voxel

data in a uniform way as RLE data. According to [17], RLE is the second fastest algorithm to

decode lossless compressed volume data.

The advantage of storing the data in a uniform way as opposed to categorizing the data into

groups is that the data can be rendered using the same algorithm, which results in reducing the

complexity.

The chapter is organized as follows. Section 4.4.5 outlines the proposed method. Section 4.4.6

explains the pre-processing. Section 4.5 elaborates on the rendering by the GPU, Section 4.6

evaluates the proposed method experimentally and Section 4.7 concludes this chapter.

4.4.2 Improvements over Previous Work

The proposed method is an extended and improved version of the original work by Wright et al.

The extensions and improvements are summarized as follows:

• The proposed method is completely optimized for highly parallel single instruction

multiple data (SIMD) processing on the GPU and uses newest NVIDIA CUDA

technology for the fastest possible visualization. The original method of Wright et al.

cannot directly be applied to GPU efficiently as it is not optimized for parallel processing

and also not aware of features and constraints of the GPU architecture.

o The proposed method uses the GPU’s shared memory to store a local one-bit-per-

pixel visibility map, which could significantly improve the speed.

o The proposed method uses the GPU’s texturing technology together with the pixel

shader to apply the fast unwrapping of the temporary buffer to the screen. The

57 Silverman, Ken. Voxlap engine. 2003. http://advsys.net/ken/voxlap.htm.

Chapter 4 Static Objects 81

original method projected one pixel after another onto the screen, causing holes that

needed to be filled in multiple sampling steps. Using such a method on modern

GPUs could cause many incoherent memory accesses, which is very inefficient.

• The proposed method uses the Digital Differential Analyzer algorithm for stepping

through the RLE voxel data to achieve accurate intersections, which could significantly

improve the visualization quality. Each voxel is therefore visualized correctly as a cube.

The original method used equidistant sampling, which is more simple, but not as accurate.

• The proposed method uses an advanced floating horizon algorithm, which allows

speeding up the rendering significantly compared to the original floating horizon

algorithm. It is able to merge disconnected segments. The original method focused on

height-map based terrains; therefore disconnected vertical segments were not as important.

• The original method stores only two colors for each vertical RLE element. The proposed

method can accommodate up to 64 voxels in one element, which is a significant

improvement for complex, dense textured, scenes. Therefore, fewer vertical segments for

the same scene are required, which improves the performance and saves memory.

• The proposed method uses perspective correct texture mapping to achieve the vertical

coloring of one RLE element. The original method only used two colors per element;

therefore they did not require this feature.

• The proposed algorithm applies a post process filtering to the rendering result to remove

jaggies at voxel boundaries for voxel close to the camera and create a smooth, yet well-

defined silhouette. To further improve the quality, a second part of this filter also applies

smoothing across the area enclosed by the smoothed silhouette, which leads to a better

result. The original method did not provide this feature.

• The proposed method is able to recover normal vectors from the depth buffer in a post

process. This saves memory as the normal vectors do not need to be stored along with the

volume data. The original method did not provide this feature.

4.4.3 Difference to Volume Rendering

The proposed approach is very different from volume rendering methods, because the proposed

method is focused on surface voxel data. Volume rendering methods commonly integrate color

and opacity by tracing a ray through the semi-transparent volume data (such as an MRI image) for

the final result. They do not directly visualize the surface as intended here. They further have

much higher memory consumption as they not only store voxels that represent the surface but the

entire solid data.

82 Chapter 4 Static Objects

4.4.4 Trends in CPU and GPU Development

To accelerate the rendering process, the proposed approach, for the first time, integrates the entire

rendering algorithm on the GPU by using NVidia’s CUDA and the Pixel Shader. The choice for

the GPU rather than CPU for computations is clearly shown in Fig. 4.7, where performance of

CPU and GPU over the past years is compared. It can be seen that the GPU develops much faster

in terms of theoretical GFlops (left) and theoretical memory bandwidth as well. GPU can

overcome the CPU’s two bottlenecks: the floating point performance and the memory bandwidth.

It can be seen that also in future versions of CPU and GPU, the GPU could remain faster in terms

of floating point performance and memory bandwidth

Until recently, graphics hardware was incapable of supporting random writes, which are crucial

for the proposed method. However, now it has become available with NVidia CUDA and

OpenCL.

Chapter 4 Static Objects 83

Figure 4.7. Hardware comparison: CPU vs GPU in terms of theoretical GFlops and theoretical

memory bandwidth (source: NVidia58)

58

 NVIDIA, "CUDA Toolkit Programming," NVIDIA. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html . 2013

84 Chapter 4 Static Objects

4.4.5 Details of the proposed Algorithm

As shown in Fig. 4.8, the 3D surface voxel data exists in the x-y-z world coordinate system,

where the x-z plane is the horizontal ground plane.

Figure 4.8. Proposed algorithm: (a) side view, (b) top-view.

As shown in Fig. 4.9, the algorithm consists of a series of steps, starting with the pre-processing

step and ending with rendering the scene and changing the viewpoint. In the pre-processing step,

the voxel data is run-length-encoded for each LOD in the vertical (y) direction. It is important that

the encoding direction is vertical, because this leads to a higher average speed of the algorithm for

the general case, when the camera looks towards the horizon. The details of this pre-processing

step are described in Section 4.4.6. As shown in Fig. 4.9, after copying the RLE data to the GPU

memory, the loop for visualizing the RLE data from the viewpoint at each time instant starts. As

can be seen in Fig. 4.8, the proposed method visualizes the scene in planes that are perpendicular

to the x-z plane and share the straight line that passes through the viewpoint and is parallel to the

y-axis (Down-vector). Ray casting the RLE data in each concentric plane is done step-by-step

from near to far along the x-z plane, while the rasterization is done for each step in the vertical

direction (parallel to the y axis) from top to bottom. To be more specific, for each step in the x-z-

plane, all the RLE elements in the corresponding column are rasterized by projecting them into

the screen space. Since the projection of each concentric plane is a line slanted across the screen

space, the results of rendering the planes are stored as temporary bitmap for performance reasons.

The temporary bitmap is then mapped to the screen using the Pixel Shader. The render loop

consists of the following five pipe-lined major steps referenced as 4.1 to 4.6 in Fig. 4.9,

corresponding to this chapter’s sections 4.5.1 through 4.5.6.

Chapter 4 Static Objects 85

Figure 4.9. Pipeline for the proposed method: in “Render Scene” Section, numbers are indicated.

Step 1. Compute the vanishing point:

The vanishing point of all concentric plane’s around the downward vector is computed on the

CPU. As shown in Fig. 4.8, the vanishing point �5 (red dot) is the intersection between the screen

plane and the Down-vector. The vanishing point needs to be computed first (Section 4.5.1), before

the concentric planes are computed (Section 4.5.2).

86 Chapter 4 Static Objects

Step 2. Compute the concentric plane parameters on GPU:

 The parameters of each concentric plane, which are needed for the rendering process, are

computed on the GPU (Section 4.5.3).

 Step 3. Render the planes on GPU:

In each concentric plane, a ray is cast in the x-z plane from the x-z-coordinates of the viewpoint to

the maximal view-distance. For each x-z-position, the corresponding column of all RLE elements

is rasterized from top to bottom for the selected LOD (Section 4.5.4.1) at this distance. For each

RLE element, the projection of the coordinates to the ray-buffer is performed first (Section

4.5.4.2). Then, culling is performed (Section 4.5.4.3). Finally, the element is rasterized as a

textured line in the ray-buffer (a temporary bitmap) (Section 4.5.4.4).

Step 4. Display the temporary bitmap on the screen:

The GPU Pixel Shader is used to rearrange the rows of the temporary texture to a radial pattern of

straight lines centered at the vanishing point on the screen (Section 4.5.5).

Step 5. Improving quality:

In the post-processing step, blocky appearance of voxels is reduced by smoothing the voxels. To

improve the rendering quality, smoothing voxels is followed by anti-aliasing (Section 4.5.6).

In order to allow shading computations without storing normal vectors inside the RLE volume

data, a special method recovers the normal vectors from the depth buffer (Section 4.5.6.3).

4.4.6 Pre-Processing

4.4.6.1 Organization

The original source data to be visualized can either be volume data or polygon data. In case of

polygonal data, the voxelization is simply done by rasterizing each triangle is voxelized into a 3D

regular grid of voxels. As described earlier, the voxelized data is compressed in the vertical (y-

axis) direction from top (larger y coordinates) to bottom (smaller y coordinates) using run-length

encoding (RLE). More specifically, each vertical RLE column is compressed separately and

referenced by one pointer of a two-dimensional lattice placed in the x-z plane, where the scale-

factor of the lattice for the x and z directions are normally uniform, respectively. As shown in Fig.

4.10, not all the voxels of a solid volumetric object is run-length-encoded. To reduce the memory

consumption, only surface voxels are finally stored, while occluded inner voxels are removed.

Section 4.4.6.2 elaborates on the specific data structure of the RLEed voxel data.

Chapter 4 Static Objects 87

Figure 4.10 Pre-Processing: The initial volume data (left), removal of non-surface voxels (middle), RLE

compressed (right).

4.4.6.2 Data Structure

The data structure of the voxel data should be able to utilize GPU performance as much as

possible, and it is therefore optimized based on statistical evaluations of experimental results. As

shown in Fig. 4.11, the entire data structure basically consists of two parts: the pointer map and

the RLE columns. Each element of the pointer map (the lattice in the x-z plane) stores three

different variables: the pointer to its corresponding RLE column buffer (described below) the

number of RLE elements (defined below) included in that RLE column as well as the first (top-

most) RLE element, consisting of “skipped voxels” and “drawn voxels”. An RLE element is

defined as a set of two sequences; first a sequence of skipped voxels, and second a sequence of

drawn voxels. A skipped voxel corresponds to an invisible, un-set, voxel that is not stored, and a

drawn voxel corresponds to a voxel that is stored in the RLE structure with RGB color data. For

example, in the decoded voxel-space illustrated in the right side in Fig. 4.11, white voxels

indicate skipped voxels, and colored voxels indicate drawn voxels, respectively. In the left-most

voxel column, the two voxels from the top are skipped (not drawn), and just below there is one

(colored) drawn voxel. Therefore, “2” and “1” are stored in the “skipped voxels” field and “drawn

voxels” field in the pointer map element of the RLE structure in the left side, respectively.

As shown in Fig. 4.11, each RLE column is referred to by a pointer of the pointer map. A

referenced RLE column stores the numbers of skipped voxels and the number of drawn voxels

starting from the second RLE element. The first RLE element is stored inside the pointer map. In

addition, the buffer for RLE column stores the color for each drawn voxel in the order of the

voxels’ appearance in the RLE column. To achieve efficient computation by GPU, the number of

memory accesses has to be minimized. 64 bit elements are therefore stored in the pointer-map, as

64 bit is the largest amount of memory that can be pulled in one read by the NVIDIA GPU used

by this thesis. Note that one 64-bit element includes all the data required to test the visibility of

the first (topmost) RLE element. This strategy increases the rendering performance (speed)

particularly for large outdoor environments and landscape-like scenes with hills and mountains.

This is because one memory read is sufficient to test the visibility for approximately 90% of all

rasterized elements according to preliminary studies.

88 Chapter 4 Static Objects

Figure 4.11 Data structure:Pointer-map: For each pointer-map element’s data, one RLE column is to

pointed by a pointer and decoded by RLE .

4.4.7 Level-of-Detail Computation

As described previously, the individual RLE data for each level of detail is obtained in advance

prior to the visualization process. The idea of texture mip-maps is applied to the original RLEed

voxel data and generate RLEed mip-volumes59.

The original RLEed voxel data has the highest resolution and is used for the LOD that

corresponds to the range closest to the view point. As the distance from the viewpoint gets larger,

RLEed voxel data with lower resolutions are used. More specifically, suppose that lev denotes a

level of detail, where lev ranges from 1 (highest resolution) to L (lowest resolution); the size

(length of a side) of one voxel in the level lev (2) is twice as long as that in the level lev-1,

where linear down-sampling is applied to the voxel data in the level lev-1 so that the voxel data

in the level lev is obtained. For example, an original volume of 16 � 16 � 16	has four mip-

volumes: 8 � 8 � 8 , 4 � 4 � 4 , 2 � 2 � 2 , and 1 � 1 � 1 . As described in the following, the

resolution is dynamically chosen by the visualization process, depending on the distance to the

viewpoint.

59

 A mip-map is a lower resolution copy of an original image. For a mip-map, a number of downsampled

copies of the original image are created, each representing one level of detail. The exact number of these

copies is depends on the pixel size (width, height) of the original image. For the visualization, high

resolution images are used near the view point, and lower resolution copies of the original are used for

distant visualizations to save memory bandwidth [64]. Mip-volumes are the three dimensional extension

of mip-maps.

Chapter 4 Static Objects 89

4.5 Rendering

The rendering for each frame consists of multiple steps, as displayed in Fig. 4.9 and described in

Section 4.4.5.

4.5.1 Vanishing-Point

The vanishing point �5, the point at which all the concentric planes meet in the screen plane (see

Fig. 4.8), is computed first. Each plane is projected to the screen as one straight line and all the

lines meet at �5. The vanishing point can easily be obtained by intersecting the vertical line that is

parallel to the y-axis and passes through the viewpoint with the screen-plane as follows:

 �5 $ E010F ⋅ B)sin�JK#, (4.2)

where) denotes the distance between the camera origin (view point) and screen-plane, and JK

represents the camera's pitch angle, which is defined as the rotation around the horizontal axis (the

x-axis) of the camera coordinate system. A pitch angle of zero means that the optical axis of the

camera is horizontal. The vanishing point is projected to the screen space by the following

equation:

 �5LMNOOP $ QMRS ⋅ �5, (4.3)

where �5LMNOOP represents the projection of �5 to the screen space, QMRS represents the 4 � 4

camera matrix. Each plane intersects the screen as one line originated in �5LMNOOP (Fig. 4.8).

4.5.2 Concentric Planes

Since each plane is projected to the screen as one line that is originated in �5LMNOOP, achieving a

complete coverage of the screen by the lines originated in �5LMNOOP is essential. To achieve this, as

shown in Fig. 4.12, the screen is partitioned into four segments, where the borderlines between

adjacent segments meet at �5LMNOOP, and the angle between adjacent borders is 90 degrees. Each

line included in the left and right (with respect to �5LMNOOP) segments is textured in the horizontal

direction, while the upper and lower segments are textured in the vertical direction. The number

of lines included in each segment depends on the number of pixels on the screen border in this

particular segment. This implies that each pixel in the screen border of a segment should be the

end of a line (projected plane), whose another end is �5LMNOOP. The number of planes (lines) can

be calculated as follows:

 45T $ 2 ⋅)32U��5LMNOOP, 	&')V'T#, 3 ∈ X1…4Z, (4.4)

90 Chapter 4 Static Objects

Figure 4.12 Screen segmentation: VP represents the vanishing point; Seg 1 to 4 refer to segments 1 to 4

respectively.

where 45T denotes the number of planes for a given 2V[(V4UT, 	&')V'T	denotes one of the four

borders of the screen, and)32U�#	indicates the computation of the distance in pixels between �5LMNOOP and 	&')V'T . The parameters �5LMNOOP and 45T , which are computed by CPU, are

transferred to GPU for the subsequent computations.

4.5.3 Plane Parameters

As described in Section 4.4.5, all the calculations described in the rest of Section 4.5 are executed

on GPU in a parallel manner by using multiple threads. The number of simultaneous running

threads depends on the number of processing units (GPU cores) of the underlying hardware. In

this case, 240 processing units are available. The parameters to be computed for each plane are as

follows (Fig. 4.8): the start and end point’s (x,y,z) coordinates of the projected line in the screen

and the plane's rotation around the y-axis. The start and end points are used for rendering and

clipping the projected RLE elements to the screen. The rotation around the y-axis defines the

orientation in which marching through the RLE structure is performed (Section 4.5.4).

Chapter 4 Static Objects 91

4.5.4 Rasterizing the Ray Buffer

The RLE elements are visualized in two steps. In the first step elements are rasterized to a 2D

temporary ray-buffer, each row of which stores the projected result of one concentric plane. In the

second step, the temporary ray-buffer’s contents are texture-mapped to the screen.

4.5.4.1 Traversal per Plane

To rasterize the RLE elements to the temporary ray-buffer, the pointer-map is traversed. The map

is placed in the x-z plane as shown in Fig. 4.8 and Fig. 4.11. As shown in Fig. 4.8, the straight

line in which a concentric plane and the pointer-map (x-z plane) meet is considered. For a point

(an element of the pointer-map) on the straight line, the RLE elements (voxels) visible from the

viewpoint are rasterized in the radial line in which the concentric plane and the screen meet. This

process starts from the point just below the viewpoint and traverses the pointer-map in the x-z

plane till it reaches the point that corresponds to the predefined maximal distance from the

viewpoint. During this traversal, culling, which is explained in Section 4.5.5, is performed for the

visibility check. The traversal is not equidistant as it is often done in volume visualization. As

shown in Fig. 4.13, equidistant traversal performs equidistant sampling of the pointer-map’s

elements on the straight line.

Figure 4.13 Equidistant and exact raycasting: Left: Equidistant; Right: Exact raycast; Upper:

sampling; Lower: Example of rendering.

This is simple, but leads to errors in the visualization. Instead, an exact grid traversal is applied,

which correctly samples all the 2D grid intersections during the traversal according to [40]. In Fig.

4.13, the visualization results of the exact traversal and the equidistant traversal are compared.

The exact traversal requires slightly more computational effort, but the result is significantly

better. During the above-mentioned traversal, LOD needs to be switched according to the distance

from the viewpoint. The LOD is selected according to the distance between the viewpoint and a

point on the line in which the concentric plane and the x-z plane meet. Suppose pd is a predefined

92 Chapter 4 Static Objects

distance along the line. From 5\, the point below the view point, to 56, which is away from 5\ by

pd on the line, the RLE data (voxels) with the highest resolution is used for the rasterization;

similarly, from 56 to 57, which is away from 56 by pd, the second highest resolution is used, etc.

Chapter 4 Static Objects 93

4.5.4.2 Projecting RLE Elements to Ray-Buffer

As mentioned earlier, the visible part of each RLE element is rasterized to the temporary buffer as

a textured line, where the x, y and z coordinates of the start-point 52 and the end-point 5V are the

3D world space coordinates of the particular RLE element. The points 52 and 5V are projected

into the screen-space using the camera matrix QMRS as follows:

52MRS $ QMRS ⋅ 52,5VMRS $ QMRS ⋅ 5V,52LMNOOP $]52MRS. 52MRS. !^ ⋅ 152MRS. " 	 ,	�� # $]5VMRS. 5VMRS. !^ ⋅ 15VMRS. " 	 .
 (4.5)

In Eq.(4.5), 52MRS and 5VMRScontain the , !, and " coordinates of the 52 and 5V in the camera

space. The camera space is defined as orthonormal-basis, where the origin is placed at the view-

point, the z-axis a straight line from the viewpoint towards the center of the screen, the x-axis a

straight line towards the origin and parallel to the upper and lower screen border and the y-axis a

straight line towards the origin and parallel to the left and right screen border. The variables

psscreen and pescreen are the two dimensional ray-buffer coordinates of 52 and 5V. As described in

Section 4.5.2, either the horizontal (x) or vertical (y) component of the start and end coordinates is

used for rasterizing RLE elements into the ray-buffer. In the ray-buffer, the projection of each

plane is represented as one column, as shown in the upper half of Fig. 4.14.

Therefore, either the horizontal (x) or vertical (y) coordinates of the start and end-point are used

to define the vertical 1D position inside the column of the ray-buffer. In Fig. 4.14, Segments 1

and 3 use the horizontal (x) coordinate, while Segment 2 and 4 use the vertical (y) coordinate of

psscreen and pescreen. After the start and end positions inside the column are determined, visibility

culling is performed (detailed in Section 4.5.4.3), before the textured rasterization is done

(Section 4.5.4.4).

4.5.4.3 Culling

As described in Section 4.5, culling needs to be performed to render only the visible parts of RLE

elements and efficiently skip RLE elements that are invisible. In this work three culling methods

are used, including novel and known methods. It is possible to combine these culling methods for

optimal performance. However, utilizing all the algorithms simultaneously is not efficient due to

mutual interference. It is efficient to use the floating horizon algorithm together with shared

memory culling or per pixel forwarding. However, shared memory culling and per pixel

forwarding interfere, because they are both executed on a per-pixel-level.

94 Chapter 4 Static Objects

Figure 4.14 Ray mapping: 1 to 4 denote segments 1 to 4; Upper: The temporary buffer with the four

segments; Lower: mapping to the screen.

4.5.4.3.1 Modified Floating Horizon

The well-known floating horizon algorithm, which was used in the original voxel forward

projection algorithm [39], is utilized also here. The floating horizon algorithm does not conflict

with the other two used culling methods and can hence be used in combination with them. The

algorithm works as follows.

For each rendered plane, two offset values the start and end-offset along the projected line in the

screen define the bounds of the render-able area and are stored. Once one RLE element that

Chapter 4 Static Objects 95

touches the start or end offset is drawn, this particular offset is updated to narrow the bounding

area along the line, which allows to cull more RLE elements.

Using the floating horizon algorithm is possible, because opaque scenes are rendered from near to

far, which means that every pixel is drawn only once. However, the basic floating horizon

algorithm works well only for height-map based scenes such as mountains. In case of complex

scenes such as a tree, unconnected segments rasterized along the line cannot be handled

efficiently by the original algorithm. Therefore, a small but significant modification is added to

the original method so that good performance is achieved even in complex scenes. The

modification is as follows: after one RLE element is rasterized that touches either border, the

offsets are updated to enclose this particular RLE element. Pixels next to the new offsets are

further tested if they have been drawn already. If they have been drawn already, the bounds are

narrowed to enclose these pixels too. Depending on the scene, this modification accelerates the

culling process up to two times.

4.5.4.3.2 Shared Memory

The shared-memory culling algorithm takes advantage of the fact that the proposed method draws

every pixel in the screen only once. This means a binary map is sufficient to store the visibility

information in the screen. This visibility map consumes little memory and therefore fits entirely

into the graphic cards shared memory. The hardware used by this thesis, the NVidia GTX series,

provides two main types of memory: Global memory and shared memory. The difference between

both types is that a memory access to global memory consumes about 300 processor cycles, while

an access to the shared memory only requires one cycle. Therefore, using a binary visibility map

stored in the shared memory, per-pixel culling works very fast without accessing the slower

global memory. Actually shared memory culling accelerates the rendering speed by 40% to 140%,

depending on the scene compared to global memory.

4.5.4.3.3 Per Pixel Forward

Lacroute’s culling based on per-pixel forwarding [35] is slightly slower and more complex than

the previously described shared memory culling, but it is needed for screen-resolutions where the

number of simultaneously processed pixels of the screen exceeds the number of bits available in

the shared memory. The shared memory is 16384KB in this thesis’ case. Using 128 parallel

threads leaves 128 bytes or 1024bit for using shared memory culling, which is reduced to

effective 900bits due to shared memory reserved for program parameters. Each bit stores the

visibility for one pixel. In case of the hardware that was used by this thesis, this happens at screen

resolutions with more than 900 pixels in the vertical direction. The per-pixel forward algorithm

works as follows: for each pixel in the temporary buffer a relative jump offset is stored. This

offset is set to zero in the beginning and is updated to the next empty pixel once an RLE element

is drawn as shown in Fig. 4.15. Eeach offset in the skip buffer points to the next free pixel. The

RGB color buffer contains the colors of the visualized RLE elements. In this case, this thesis uses

a blue and green example pattern, but it could be any other color too.

96 Chapter 4 Static Objects

Since relative jumps help to skip pixels efficiently, a speed-up of approximately 1.08 to 2.0 times

compared to not using skip pixels is achieved, which is significantly faster than the floating

horizon algorithm alone, but approximately 20% slower compared to shared-memory culling.

Figure 4.15 Skip-Buffer.

4.5.4.4 Drawing RLE elements as textured Lines

Each RLE element is rasterized into one or multiple columns of the temporary ray buffer as a

texture mapped line, using the coordinates of 52 and 5V as the vertical positions in the column.

Using texture mapping the overall computation significantly speeds up, because voxels are

rendered as a group rather than individually (the data structure is described in Section 4.4.6.2). To

achieve a proper appearance, perspective correct texture mapping is applied. Simple non-

perspective texture mapping interpolates the 2D texture coordinates, which leads to an

approximated but inaccurate visual appearance. Perspective correct texture mapping uses not only

the 2D texture coordinates but also the depth coordinate (z), which leads to a correct result.

4.5.5 Displaying the Ray-Buffer

The texture stored in the temporary ray buffer can be efficiently be mapped to the screen by using

the graphics card’s Pixel-Shader. To achieve this, the source �_, `# texture coordinate is

calculated in the ray buffer for each target pixel � 2, !2# on the screen. The mapping is applied in

a concentric manner with respect to the vanishing point �5 as shown in Fig. 4.14. The formula to

compute the source �_, `# texture coordinates inside the ray-buffer is given by Eq.(4.6).

 _7,a $ � 2 B �5. # ⋅ |!2 B �5. !| / 27,a,7̀,a $!2 B �5. !,_6,8 $ �!2 B �5. !# ⋅ | 2 B �5. | / 26,8,6̀,8 $ 2 B �5. . (4.6)

where _ defines the horizontal coordinate inside the ray-buffer, ` the vertical coordinate, 2 the

horizontal screen coordinate, !2 the vertical screen coordinate and s the start-offset that is added

for the corresponding segment of the ray-map. The indices of _, ` and s represent the segment

index as numbered in Fig. 4.13. The valid range of the texture coordinates �_, `# as well as the

screen coordinates � 2, !2# ranges from 0 to 1.

Chapter 4 Static Objects 97

4.5.6 Quality Aspects

As shown in the flow-chart of Fig. 4.9, the quality of the image rendered in the screen is

improved at the final stage of the rendering pipeline. Since conventional texture mapping

functions of the graphics card are used, texture filtering, which is natively supported by every

GPU, can be applied without any performance impact. Two methods are employed to improve

quality: smoothing and anti-aliasing. The combination of both algorithms, smoothing and anti-

aliasing, can significantly improve the rendered image quality.

4.5.6.1 Smoothing

Smoothing is applied as a post-process in image-space by the Pixel Shader, where a special

smoothing method achieves two types of smoothing in one shader pass: Smoothing of voxel

silhouettes and smoothing of voxels close to the camera. Figure 4.16 shows an example of the

result of this method.

Figure 4.16 Smoothing results: Left: without smoothing; middle: smoothed silhouette; right: smoothed

interior part

The smoothing consists of multiple steps, as illustrated in Fig. 4.17. Step a) shows the target pixel

in the original image. In step b), the minimum depth of eight pixels that lies in a circle around the

target pixel is searched. The radius is fixed for this operation. In step c) a box filter for 5 � 5

pixels is obtained, where the scale factor of the box filter is determined by the previously obtained

minimum-depth. For the smoothing, only pixels, whose depth values are close to the minimum

depth, are averaged. Step d) shows the result, which demonstrates both the silhouette and the

inner region in the example are smoothed well.

98 Chapter 4 Static Objects

Figure 4.17 Smoothing steps: a) Target pixel; b) Find minimum depth (Z); c) Box-filter with threshold,

scaled according to the minimum depth; d) Result.

4.5.6.2 Anti-Aliasing

For further improvement of the quality, full-screen anti-aliasing (AA) by rendering the scene with

a higher resolution and down-sampling the rendered image is applied so as to obtain the target

resolution. Figure 4.18 compares three configurations: without AA (Non-AA), 2 � 1 pixel AA

(2 � 1	AA) and 2 � 2 pixel AA (2 � 2 AA). For 2 � 1 AA, two horizontal pixel are averaged to

one pixel in the visualized image. For 2 � 2 AA, two by two rendered pixel are averaged to one

pixel in the visualized image. Obviously, 2 � 2 pixels AA and 2 � 1 pixels AA give the best and

second best quality, respectively.

Figure 4.18 Anti-aliasing (AA): left: Non AA; middle: 2x1 AA; right: 2x2 pixel AA.

Chapter 4 Static Objects 99

4.5.6.3 Screen Space Normals (SSN)

To visualize large data sets such as the Richtmyer-Meshkov on consumer graphics cards with

only 256MB RAM, storing all the surface normal needed for shading is heavy burden for the

computation. Instead the surface normal n for shading can be approximated from a few samples in

the depth buffer by Eq.(4.7).

 "L $ cV5Ud� L, !L#,Δ $ L B '4)�1 "L⁄ #,Δ! $!L B '4)�1 "L⁄ #,)"g $ "L B cV5Ud� L / Δ , !L / Δ!#Δ ,
)"h $ "L B cV5Ud� L / Δ , !L / Δ!#Δ! ,4 $ �1 0)"g# � �1 0)"h#;

 (4.7)

	
where L , and !L represent the horizontal and vertical coordinates of a pixel in the screen,

respectively; cV5Ud�, # represents the depth of the pixel (argument) in the depth-buffer; '4) is the

random function to achieve an averaged result for multiple samples; and operator � for

computing 4 is the standard vector cross-product.

Note that Eq.(4.7) indicates that the sample region needs to be reciprocal in size to the sampled

depth value "L of the pixel � L and !L#. In case the pixel is close to the camera, a large region is

needed and vice versa. To achieve a satisfying result in the experiments, at least 16 samples from

the depth-buffer should be used. Since computing a random value by GPU is slow, a random

value is sampled from a texture instead. As SSN and SSAO [41] sample the depth-buffer in a

similar way, it is possible to efficiently combine both methods in only one shader-pass. An

example of the result is demonstrated in Fig. 4.19.

Figure 4.19 Normals: The depth-buffer can successfully be utilized to compute normal vectors on-the-fly

(Left). These can be utilized for shading and further enhanced with screen space ambient occlusions (Right).

100 Chapter 4 Static Objects

4.6 Experimental Results

4.6.1 Experimental Conditions

Experiments with multiple scenes are conducted to evaluate the proposed algorithm in terms of

rendering speed, memory consumption, and quality aspects. The scenes used for the experiments

are shown in Fig. 4.20.

The experimental system consists of a Pentium-D 3.0 GHz Processor with 1 GB of RAM and a

GeForce285 GTX (1024MB) graphics board with 240 stream processors. As shown in Fig. 4.9,

NVidia CUDA is used to compute the ray casting part of the algorithm, while texture mapping the

temporary ray-buffer and the post-processing are executed in the Pixel-Shader. The render-

resolution for all the tests is set to 1024 � 768 pixels, while the AA setting for improving quality

is 2 � 1, which provides the best tradeoff between quality and performance.

4.6.2 Memory Consumption

Table 4.1 shows the result of benchmark tests, for the six 1024x768 pixel scenes shown in Fig.

4.20, where bits per voxel indicates the number of bits required for storing the position

information of one voxel, taking the pointer-map and mip-maps into account as well. The bits

used to store the position of one voxel range from 10.83 to 26.3, which is significantly less than a

pointer-based octree, which requires 32 bits only for the tree leaves, and sums up to about

32*(1+1/8+1/64+..)=36.8 bits for the entire tree.

However, in some scenes the proposed algorithm requires more memory than splatting-based

algorithms such as QSplat, which only utilizes 13 bits per leaf. As described earlier, the accuracy

of splatting-based methods is limited to the size of the splats; therefore, in particular,

unreasonably sharp edges tend to degrade the image quality.

Table 4.1 Benchmark Tests: The RLE element count in the frustum (Total), the processed element count

(Proc) and the rendered element count in million (Ren). The resolution is stated in voxel. Further, Fps

denotes frames per second and Speed is given in million RLE elements per second (Elems/s)

Chapter 4 Static Objects 101

Figure 4.20 Scenes used for tests: Handcrafted mansion (upper-left), Bonsai forest with 3000 trees

(upper-right), Hotei, or Happy Buddha, (middle left) and a Procedural Landscape with about 4000 visible

trees (middle right), the Stanford Dragon (lower-left) and the Stanford Bunny (lower-right). Unit for the

number is given in voxels.

4.6.3 Algorithm Speed

To measure and evaluate the rendering speed, the maximum polygon performance of the graphic

card used in this thesis was determined first. In case of rendering as a quad by two textured

triangles, rendering speed of 350 Million triangles per second is the limit of the graphic card for

rendering triangle strips. However splatting-based rendering reaches 100 Million primitives

(splats) per second. Table 4.1 shows that the proposed algorithm achieves a high count of

processed RLE elements per second (Speed, Elems/s); i.e. ranging from 91 to 365.8 Million RLE

elements per second. This speed even outperforms the default OpenGL rendering pipeline, whose

rendering speed is up to 350 Million disconnected triangles/s.

102 Chapter 4 Static Objects

Further information in Table 4.1 includes the total number of RLE elements inside the view

frustum (RLE Elem total), the number of RLE Elements that have passed the culling test (RLE

Elements, ren), frames per second (fps) and the resolution in voxels for the instance single of each

dataset (Resolution).

For testing the performance in case of large outdoor areas, scenes containing more than 1000

instances of the same data set are created for the procedural scene and the bonsai scene. The

maximal view distance is set to 40000 voxel in both cases.

The results for the large outdoor scenes of the bonsai and the procedural dataset are also listed in

Table 4.1. They were included in the tests, to evaluate the performance, the compression ratio and

the quality as well. The results show that the procedural dataset achieves the highest performance

in RLE elements per second. The bonsai data-set achieves not the same high performance as the

scene is not suited well for the used culling algorithms.

To compare the GPU performance with the CPU performance, the proposed method was executed

on the CPU as well. As a result, it turns out that the GPU version, tested on an NVidia GeForce

285, is three to seven times as fast as the CPU version, executed on a test system with an Intel

Core2 Quad Q6600 CPU with four cores running at 3 Ghz each and 1GB RAM. The GPU

outperformed the CPU by factor of three for simple scenes without AA and factor of seven for

complex scenes, with AA enabled. The scenes used for testing are shown in Fig. 4.21.

Figure 4.21 GPU vs CPU: The GPU version running on an NVidia GTX 285 is compared to the CPU

version (Intel Q6600 4x3Ghz).

Chapter 4 Static Objects 103

Figure 4.22 Raycasting vs Splatting (1): left: the proposed RLE method; middle: quad splatting; right:

triangle splatting

Figure 4.23 Raycasting vs Splatting (2): left: the proposed RLE method; middle: quad splatting; right:

triangle splatting

For a comprehensive analysis, the proposed method is further compared to common splatting. The

comparison was carried out in terms of speed, memory consumption and quality. To achieve fast

splatting, each voxel of the voxel data was stored as one splat with position data (three float

values for x, y and z) and RGB color data. Equal to the voxel data, also the splat data contains

multiple levels of details. For the data-set that is used in this test, 12 Million splats are used for

the highest level of detail. The complete data-set including all levels of details contains 16.3

Million splats, which requires 261.44 MB when stored as basic splats. The original RLE voxel

data containing the equal number of voxels requires only 49.5 MB.

The array of splats is stored on the GPU as vertex buffer object (VBO) for maximal performance.

To visualize the splats, the vertex data is sent to OpenGL as vertex array of GL_POINTS, and

then converted into triangles or quads by the Geometry Shader. A quad consists of two triangles

in this case. The hardware for this test was a NVIDIA GTX 580M GPU with an Intel Core i7

CPU and 16GB of RAM.

For rendering a single copy of the 1024 � 1024 � 1024	 voxel data-set, 32 fps are achieved by

the proposed method, 76 fps for quad based splatting and 95 fps for triangle based splatting. The

results are shown in Fig. 4.22. For the two splatting based methods, 2.9 Million splats were

104 Chapter 4 Static Objects

required to visualize the scene. For visualizing 1600 (40 times 40) instances of the same data-set,

32 fps are achieved for the proposed method, 5.5 fps for quad based splatting and 6.8 fps for

triangle based splatting. The results are shown in Fig. 4.23. For the two splatting based methods,

48 Million splats were required to visualize the scene.

As a result, it turns out that splatting suits well for visualizing single objects, where it is up to

three times as fast as the proposed raycasting approach. However, it is much slower for very

complex scenes. The proposed method achieves 4.7 times as fast as splatting for the test scene

consisting of 1600 instances. The proposed method, therefore, scales better for visualizing

complex scenes than conventional splatting.

4.6.4 Rendering Quality

The rendering speed is evaluated in regard to the image quality by measuring the performance for

different quality settings. No anti-aliasing, 2 � 1 anti-aliasing and 2 � 2 anti-aliasing (Fig. 4.18)

were compared.

If the speed for the no anti-aliasing is 100%, 2 � 1 AA and 2 � 2 AA achieve 104% and

approximately 80%, respectively. The increase in speed for 2 � 1 AA might be caused by better

coalescence for reads from GPU memory. On GPU, coalescent memory reads are very important

for high performance. Non-coalescent reads are significantly slower. As a conclusion, half the

GPU’s processing units must be idle in case of the no AA configuration, because 2 � 1 AA

requires two times as many floating-point operations as no AA. As a result of this experiment, the

main limiting factor of the proposed algorithm is the memory-bandwidth due to the following

reasons. Every rendering algorithm’s speed is either limited by the speed of the processing unit

(here the GPU) or the speed of the memory. Here, the speed of the memory is the limitation. The

memory bandwidth was reduced by employing multiple culling algorithms, but it still remains the

limiting factor. To improve that, additional compression schemes to reduce the memory

bandwidth might be helpful.

Chapter 4 Static Objects 105

Figure 4.24 Quality: To show the ability to render at high quality, a complex test scene with many fine

details was created and rendered at 512 � 348 pixel with 2 � 2 AA as well as no AA for a comparison.

Note that 2 � 2 AA successfully removes aliasing artifacts for distant pixels.

Figure 4.25 Raycasting vs Splatting (3): render quality for geometry close to the camera; left: the

proposed RLE method; middle: quad based splatting; right: triangle splatting

As shown in Fig. 4.24, the proposed algorithm is able to achieve high quality renderings for a

scene with many fine structures. To facilitate the comparison, the result was rendered using 2 � 2

AA in the left half and no AA in the right half.

Further analysis of the quality was carried out by comparing the previously introduced quad and

triangle based splatting to the proposed method. As shown in Fig. 4.25, triangle based splats

(right) achieve the lowest quality, as they are unable to approximate geometry close to the camera

106 Chapter 4 Static Objects

in a proper manner; quad based splats (center) achieve a better approximation, but their

silhouettes and other geometry close to the camera appear blocky and not well defined. The

proposed methods result (left in Fig. 4.25) achieves the best quality: namely, as silhouettes are

smooth and yet opaque. Furthermore, geometry enclosed by silhouettes close to the camera is

smooth and looks similar to the result of texture filtering, which is commonly used in the

visualization of textured 3D models.

Finally the Richtyer-Meshkov data set was visualized, with a resolution of 2048 � 1920 � 2048.

The size of the RLE compressed data of the surface at iso-value 60 is 198 MB including mip-

maps. This results in a compression factor of 5:1 in regard to the binary volume data. As this

particular data set is very large, no color or shading information was stored along with the voxel

data. The surface normal vectors were computed on-the-fly from the screen-space for the

visualization, as well as approximated ambient occlusions. For the visualization speed at a

resolution of 1024 � 768, interactive frame-rates were achieved: 15 fps for rendering a single

instance of the data-set Fig. 4.21 and 10 fps for rendering the data-set repeatedly as shown in Fig.

4.26. It is possible to render the complete Richtmyer-Meshkov dataset more than 100 times. For

the shading, a combination of screen-space-ambient-occlusion and screen-space normal was

utilized.

Figure 4.26 Richtmyer-Meshkov dataset

Chapter 4 Static Objects 107

4.6.5 Comparison to Related Methods and Discussion

The proposed method was compared to existing methods in terms of rendering speed, memory

consumption and visual precision.

4.6.5.1 Memory Consumption

The proposed method is compared to a basic triangle mesh in Table 4.2 for multiple scenes. The

results shows that a triangle consumes about 9 times as much memory as a single voxel.

Comparing the proposed method to GigaVoxels [37] (Table 4.3) shows that GigaVoxels uses

about 4.8 times as much memory as the proposed method, considering 32 bit color depth for each

voxel. Comparing the proposed method to QSplat [5] (Fig. 4.27) shows that Qsplat consumes 6 -

9 bytes per splat, which is similar to the proposed method with 4.7 – 6.8 bytes per voxel. For the

file-size of the Buddha and the Dragon model, the proposed method’s data structure is 1.64 -

1.75x as large as the data structure of Qsplat. The number of splats stored inside both Qsplat

models remains unknown for the Buddha and the Dragon model though. The QSplat data values

for the data size per splat for the comparison are given by the original QSplat paper. Comparing

the proposed method to Sparse Voxel Octree Raycasting method by Jon Olick [15] (Fig. 4.27)

shows that the run-time structure for octree raycasting uses ~10x as much memory per voxel

compared to the proposed method. Comparing the proposed method to GPU Triangle Raycasting,

Karras et al, [42] (Fig. 4.27) shows that one triangle uses about 9 times as much memory as one

voxel in terms of position data. However, additional memory is used by the acceleration structure

for ray-tracing.

4.6.5.2 Computational Speed

For the computational speed, the test system was an Intel Core i7-2670QM CPU (2.2Ghz) with

NVIDIA GeForce GTX 580M GPU and 16 GB of RAM.

The proposed method is compared to a basic triangle rasterization in Fig. 4.28 on the test system.

The result shows that the proposed method is faster in all cases. The result is further visualized as

graph in Fig. 4.29, where an increased speed for higher distance can be observed. The proposed

method further scales well for rendering complex scenes, as demonstrated in Fig. 4.30. While

conventional rasterization achieves only 1 fps for visualizing the Imrod model 6 times, the

proposed method achieves 30 fps for visualizing it 1600 times.

To compare this thesis’ method in terms of speed and to the two voxel octree raycasting methods

GigaVoxels by Crassin [37] and Sparse Voxel Octree raycasting by Olick [15], an exemplary

sparse voxel octree raycasting method was implemented for this thesis. In Fig. 4.31, the

exemplary sparse voxel octree raycasting method is compared to GigaVoxels for the San Miguel

Scene. The performance values are the original ones stated in Crassin‘s PH.D thesis, page 114

[43]. The performance of GigaVoxels was measured on a NVIDIA GTX 480 graphics card, which

is significantly faster than the test system used here:

108 Chapter 4 Static Objects

• NVIDIA GTX480: (used for GigaVoxels)

• Floating point operations per second: 1.3TFlop/s, RAM memory bandwidth: 177GB/s60,

• 3DMark Score: 581061, CL Raytrace Benchmark62 Score: 136323 points

• NVIDIA GTX580M: (the test system used here)

• Floating point operations per second: 0.95TFlops, RAM memory bandwidth 96GB/s63,

• 3DMark Score: 3450, CL Raytrace Benchmark Score: 61154 points

The result shows that the exemplary sparse voxel octree raycasting method is at least as fast as the

GigaVoxels, considering that the hardware used here is significantly slower in memory bandwidth

and floating point computation speed than the hardware used to measure the performance of

GigaVoxels. In Fig. 4.31, the exemplary sparse voxel octree raycasting method and GigaVoxels

are further compared to the proposed method. The result shows that the proposed method is

significantly slower than both methods for low screen resolutions and low voxel resolutions.

In Fig. 4.32, the exemplary sparse voxel octree raycasting method is compared to the sparse voxel

octree raycasting method of Olick and to the proposed method. It turns out that the three

compared methods achieve the same speed in this test using the Imrod model. The hardware for

the exemplary sparse voxel octree raycasting method and the proposed method were this thesis’

test system. The hardware used by Olick was an NVIDIA GTX 280 graphics card, which provides

a similar performance as follows:

• NVIDIA GTX580M (test system used here):

• Floating point operations per second: 0.95 TFlops, RAM memory bandwidth 96GB/s

• NVIDIA GTX280 (hardware used by Olick):

• Floating point operations per second: 0.93 TFlops, RAM memory bandwidth 142GB/s64

In Fig. 4.33, the inner area of the San Miguel scene is compared for the exemplary sparse voxel

octree raycasting method, the proposed method and to triangle raycasting for a high screen

resolution, 2048 � 768 pixel, The exemplary sparse voxel octree raycasting method is fastest for

this scene (65 fps), whereas the proposed method is slightly slower (50 fps), and triangle

raycasting comes last (26 fps).

In Fig. 4.34, the proposed method is compared to triangle raycasting and the exemplary sparse

voxel octree raycasting method for the Imrod model. Here, all three methods are about the same

60 http://en.wikipedia.org/wiki/GeForce_400_Series
61

 http://community.futuremark.com/hardware/gpu/NVIDIA+GeForce+GTX+480/review
62

 http://clbenchmark.com
63

 http://en.wikipedia.org/wiki/GeForce_500_Series
64 http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf , page 11

Chapter 4 Static Objects 109

speed, where the proposed method and the exemplary sparse voxel octree raycasting method are

slightly faster (46 fps) than the triangle raycasting method (42 fps).

In Fig. 4.35, the proposed method is compared to triangle raycasting and the exemplary sparse

voxel octree raycasting method for the Imrod model with a different camera setting. All three

method achieve about the same performance.

In Fig. 4.36, the proposed method is compared to the exemplary sparse voxel octree raycasting

method for a very complex voxel scene containing multiple instances of the same tree dataset

with 12.6 million voxels. For this scene, which is the most complex of all tested scenes due to

numerous fine branches of the trees in the scene, the proposed method achieves 20 fps, which is

1.4 times as fast as the exemplary sparse voxel octree raycasting method with 14 fps. Therefore,

the proposed method would also be significantly faster than GigaVoxels for this complex scene.

In Fig. 4.37, the proposed method is compared to QSplat in multiple configurations. The result

shows that the proposed method outperforms Qsplat for all test scenes by factor 1 - 3.7 with an

average of 2.5.

4.6.5.3 Visual Precision

All related methods are compared to the proposed method for visual precision as follows.

In Fig. 4.38, triangle based rasterization is compared to the proposed method for multiple camera

configurations ranging from near to far. While there is a significantly higher precision for triangle

based rasterization for close views, when the size of a voxel on the screen is greater one, the

results are similar as far as one voxel is about the size of one pixel. Due to multiple anti-aliasing,

triangle based rasterization achieves higher precision in all cases, though.

In Fig. 4.39, GigaVoxels is compared to the proposed method. GigaVoxels achieves higher

quality for geometry close to the camera than the proposed method by using tri-linear texture

filtering. For distant views, similar results are obtained. In Fig. 4.39, the upper dragon scene is

sampled at 2048 � 2048 � 2048 voxel and the lower dragon scene at 1024 � 1024 � 1024.
In Fig. 4.40, the Imrod model is compared to triangle raycasting for multiple views. While

triangle raycasting achieves a higher precision for close views, similar results are obtained for far

views, where the size of one voxel is equal to one pixel. For the test, the screen resolution was

2048 � 768	pixel. For the triangle model, one million triangles were used. The voxel model was

sampled at 1024 � 2048 � 1024 voxel and represented by 6.8 million voxel.

In Fig. 4.41, QSplat is compared to the proposed method for visualizing the entire Lucy model. In

Fig. 4.42, QSplat is compared to the proposed method for visualizing close-up views of the

Buddha model. For distant views as in Fig. 4.41, similar results are obtained for both methods.

The proposed method renders more accurate than Qsplat for close views in Fig. 4.42. Further,

smoothing is supported by the proposed method, which is not supported by QSplat.

In Fig. 4.43, sparse voxel octree raycasting by Olick is compared to the proposed method. Octree

raycasting visualizes each voxel as cube, which is equal to the proposed method. In addition, the

proposed method supports smoothing. Shading is not considered for the comparison.

110 Chapter 4 Static Objects

4.6.5.4 Summary

This sub-section summarizes the comparison results presented in Sections 4.6.5.1 to 4.6.5.3.

In Fig. 4.44, the memory consumption is summarized for all related methods in relation to the

proposed method. The proposed methods factor is set to one. It turns out that none of the related

methods achieves a lower average memory consumption than the proposed method. Only QSplat

is comparable to the proposed method in terms of memory consumption. GigaVoxels requires 4.8

times as much as the memory of the proposed method, and the other remaining methods more

than nine times as much as the memory of the proposed method.

In Fig. 4.45 the computation speed is summarized for all related methods in relation to the

proposed method. As before, the proposed methods’ factor is set to one. The results show that

none of the related methods achieves a higher average performance for detailed scenes visualized

at a high screen resolution. Similar performance is achieved for triangle based raycasting, Sparse

Voxel Octree raycasting and GigaVoxels. QSplat achieves in average 0.38 times the performance,

and triangle based rasterization achieves only 1/3000th the performance for complex scenes.

In Fig. 4.46 the computation visual precision is summarized for all methods related to the

proposed method. As before, the proposed method is set as reference. The results show that the

proposed method achieves a higher precision than QSplat and a smoother result than Sparse

Voxel Octree raycasting, but that the result is not as good as GigaVoxels and triangle based

methods. The difference between these methods is significant for geometries close to the camera,

where one voxel is larger than one pixel. In case that the camera is far away and one voxel is

about the size of one pixel, the results are more similar.

As a summary it turns out that the proposed method achieves the lowest memory consumption

among the compared related methods, the highest rendering speed for visualizing complex

geometry at high screen resolutions although the proposed method is tied with some other

methods. Comprehensive evaluation for the memory consumption and computation speed

indicates that the proposed method is best.

Chapter 4 Static Objects 111

Table 4.2 Memory consumption (1): Triangles compared to the proposed method (voxel)

Table 4.3 Memory consumption (2): GigaVoxels [37] compared to the proposed method for the Sponza

scene. The GigaVoxels screenshot is with courtesy of Cyril Crassin

Figure 4.27 Memory consumption (3): QSplat, Sparse Voxel Octree and Triangle raycasting compared to

the proposed method.

112 Chapter 4 Static Objects

Figure 4.28 Speed comparison (1): Triangle rasterization compared to the proposed method for multiple

camera configurations.

Figure 4.29 Speed comparison (2): Triangle rasterization compared to the proposed method for multiple

camera configurations.

Chapter 4 Static Objects 113

Figure 4.30 Speed comparison (3): Triangle rasterization compared to the proposed method for a complex

scene with multiple Imrod models.

Figure 4.31 Speed comparison (4): GigaVoxel and this thesis’ Sparse Voxel Octree Raycasting (that was

implemented for comparison purposes) is compared to the proposed method for multiple camera

configurations. The GigaVoxels [43] screenshots are with courtesy of Cyril Crassin

114 Chapter 4 Static Objects

Figure 4.32 Speed comparison (5): Sparse Voxel Octree Raycasting of Jon Olick is compared to this

thesis’ Sparse Voxel Octree Raycasting method and to the proposed method. The Sparse Voxel Octree

Raycasting screenshot (left) is with courtesy of Jon Olick.

Figure 4.33 Speed comparison (6): this thesis’ Sparse Voxel Octree and triangle raycasting are compared

to the proposed method.

Chapter 4 Static Objects 115

Figure 4.34 Speed comparison (7): this thesis’ Sparse Voxel Octree is compared to the proposed method

and to triangle raycasting.

116 Chapter 4 Static Objects

Figure 4.35 Speed comparison (8): this thesis’ Sparse Voxel Octree is compared to the proposed method

and to triangle raycasting

Figure 4.36 Speed comparison (9): this thesis’ Sparse Voxel Octree is compared to the proposed method.

Chapter 4 Static Objects 117

Figure 4.37 Speed comparison (10): the proposed method is compared to QSplat.

Figure 4.38 Visual Precision (1): the proposed method is compared to triangle rasterization.

118 Chapter 4 Static Objects

Figure 4.39 Visual Precision (2): the proposed method is compared to GigaVoxels. The GigaVoxels

screenshots is with courtesy of Cyril Crassin

Figure 4.40 Visual Precision (3): the proposed method is compared to triangle raycasting.

Chapter 4 Static Objects 119

Figure 4.41 Visual Precision (4): the proposed method is compared to QSplat.

120 Chapter 4 Static Objects

Figure 4.42 Visual Precision (5): the proposed method is compared to QSplat, close-up view.

Figure 4.43 Visual Precision (6): the proposed method is compared to Sparse Voxel Octree Raycasting.

The Sparse Voxel Octree Raycasting screenshot (left) is with courtesy of Jon Olick.

Chapter 4 Static Objects 121

Figure 4.44 Summary of memory consumption per element.

Figure 4.45 Summary of computation speed for high screen resolutions (2048x768).

122 Chapter 4 Static Objects

Figure 4.46 Summary (3): visual precision.

4.7 Conclusion

This chapter has proposed a raycasting based method for the fast visualization of complex RLE

compressed voxel data scenes. The proposed method improves the original voxel forward

projection algorithm in several ways so that complex scenes are efficiently visualized and so that

low memory consumption is achieved.

The experimental results and discussion are summarized as follows.

• Memory Consumption: The low memory consumption is achieved using the proposed 16

bit volume data run-length-encoding with 10 bit used for voxel skipping and 6 bit used

for counting stored voxels. As a result of applying the proposed method and related

methods to multiple data-sets (triangle and voxel data) in the experimental results section,

the following results are obtained:

o The proposed method and QSplat consumes least memory.

o Gigavoxels, triangles, triangle raytracing and sparse voxel octrees consume more

memories.

Chapter 4 Static Objects 123

• Rendering speed: The proposed method and related methods are applied to multiple data

sets including voxelized polygon data and procedurally generated voxel data. The

following results are obtained:

o The proposed method, triangle raytracing, GigaVoxels, and sparse voxel octree are

fastest.

o QSplat and triangle rasterization are slower.

• Comprehensive Evaluation: The proposed method is tied with QSplat in terms of low

memory consumption, and is tied with triangle raycasting, GigaVoxels and sparse voxel

octree in terms of rendering speed. Comprehensive evaluation for these results indicate

that the proposed method is best. This comprehensive evaluation result indicates that the

goals of this chapter are achieved.

The proposed method uses a special filter method to smooth voxel edges on the screen. The filter

method works well for specified distance range of voxels to the camera. For voxels that a very

close to the camera, a large area would be required to be smoothed out, but this is not done due to

performance reasons.

Future work might include developing better ways to achieve smooth surfaces of the visualized

voxel structure on the screen, without having impact on rendering speed or memory consumption.

124 Chapter 4 Static Objects

Chapter 5 Skeletal Animation 125

 Skeletal Animation Chapter 5.

5.1 Goals

This chapter proposes novel ways to improve existing skinned skeletal animation methods.

Skinned skeletal animation methods can be utilized to bind a skeleton to any arbitrary triangular

mesh for achieving any kinds of complex deformations. Commonly, skinned skeletal animation is

used for animating life-forms in general, where most of them are human characters in video

games or cinematic productions.

5.1.1 Spline Skinning

• Non-collapsing geometry: The proposed skinned skeletal animation approach should

avoid collapsing geometry, which could occur in joints that are bent by large angles in

case of conventional matrix skinning.

• Faster computation and flexibility: Higher performance and more flexibility compared to

DQS should be achieved.

• Small number of control joints for a spine: As existing methods require many control

joints to represent a spine or facial animation, the proposed approach should significantly

reduce the number of necessary joints without sacrificing the quality of the deformation.

5.1.2 Deformation Styles

• Reusability: Different from existing methods, the proposed approach should allow the

simple and abstract design of deformation styles for re-usable deformation behaviors. The

generation of muscle like deformations or the design of cloth wrinkles should be allowed,

for the instant application to any number of target characters simultaneously.

For brevity, in the following discussion the proposed skeletal animation module is referred to as

animation system.

5.2 Related Work

Over time, many methods have appeared to achieve the animation of characters, where the most

important methods can be divided into Free-Form-Deformation (FFD) [44], Skeletal Subspace

Deformation (SSD) [18], shape blending and spline aligned deformations [45]. They form a

foundation for many subsequent research approaches and have reappeared in countless variants

and combinations since their initial invention. In order to improve the deformation quality and

realism for skeletal animations, various methods have been suggested.

126 Chapter 5 Skeletal Animation

5.2.1 Spline Skinning

SSD, which is the earliest method, is still the most popular method for skinned skeletal animation

today. However, due to deformation artifacts due to large bend angles, many methods have been

proposed to improve that. Methods that directly improve SSD are QS [19] and DQS [20]. They

change the interpolation domain from matrices to quaternions or even dual quaternions (DQS).

This cannot prevent all deformation artifacts, but successfully avoids effects as collapsing

geometry by preserving a high computational speed, while their computational speed is still not as

high as SSD. In case of quaternion skinning, about 78% of the speed of SSD is achieved, and in

case of DQS, 72% the speed of SSD is achieved, where details about their performances are

provided by [19] and [20].

A different and more flexible approach is to use skinned spline aligned deformations and apply

them to skinned skeletal animation. Two methods to achieve these are [46] (an earlier version of

the proposed method that calculates the spline on a per vertex basis rather than pre-computing the

spline prior to the per vertex deformation step) and [47]. Concerning Yang et. al’s method [47],

focuses on the non-real-time case, as their application is a plugin for the commercial software

Maya, while [46] focuses on the application in real-time systems by extensive usage of the GPU.

In [47], which was developed independently from the method proposed in this chapter at exactly

the same time, high performance and the use in real-time applications was not intended. Therefore,

performance benchmarks were not provided.

Another related approach in this context is Cornea et al’s method [48], which introduced curve

skeletons are introduced and discussed in general. Their method focuses on automatically

computing of curved skeletons from models rather than utilizing manually created skeletons, for

skeletal animations.

A method that extends FFD is a sweep-based FFD [49], which was independently developed the

same time from the method proposed in this chapter and appeared in the same conference as Yang

et al’s skinned skeletal animation approach [46]. The sweep based FFD provides the ability to

efficiently model radial deformations by allowing the user to edit cross-sections along spline-

curves. Their method however, does not provide skinning; therefore it is not possible to have

vertices influenced by multiple spline curves. Furthermore, since they do not focus on real-time

applications, they do not provide any performance benchmarks for the deformation time. The

proposed system utilizes two variants of sweep-based FFDs to apply the deformation styles to the

geometry, as detailed in later sections.

Another sweep-based algorithm is Hyun et al’s method [50], which uses the sweep-based

deformation to create skinned skeletal animation. The algorithm allows a limited creation of

customized deformations, as the user can define virtual muscles, which are taken into account

during the animation. Their method achieves good deformation quality, but they achieve barely

real-time performance due to complex computations even for a single character. It is, therefore,

not suited well for real-time video-game applications.

To provide more realistic deformations, advanced methods such as [51], [52], [53], and [54] were

developed. They allow the adjustment of the material stiffness and take physical constraints into

Chapter 5 Skeletal Animation 127

account, which directly affects the deformation. Other methods, such as the volumetric graph

laplacian [55] construct an inner graph to preserve the mesh's inner volume while deforming. All

of these methods can provide a high quality deformation, but they cannot provide the same high

performance as SSD due to their complexity.

5.2.2 Deformation Styles

A method that allows the re-use of deformations is Sumner et al’s method [56], by which the

animation of one mesh may drive the deformation of another, similar mesh. Different from this

chapters’ goals, their method targets at reusing complete deformations, not deformation's

behaviors. They do not allow the creation of an abstract deformation behavior independent of the

underlying mesh.

Example based methods allow the pose-dependent modification of animations. Initially pose-

space-deformation (PSD) [57] was developed and then was advanced by [58] and [59]. PSD

basically allows an artist to individualize particular poses, where intermediate poses are calculated

by interpolation. In this case, pose-dependent deformations can also be modeled by the artist, but

in a different and more complex way to the proposed method. Instead of directly displaying

certain vertices in a certain pose, more abstract design, which could cover all poses is desired.

However, PSD and related methods achieve that, because they are tightly bound to the mesh they

created.

Cloth simulations were developed to provide realistic cloth appearances. A comprehensive

overview can be found in [4]. Conventional cloth simulations include [60], [61], and [62], which

allow the design of surface details for the animation. However, cloth deformations cannot achieve

the goal of re-usable deformations for skinned skeletal animations designed by an artist.

Furthermore, all the three methods apply surface details in direction to the surface normal and

depend on the local mesh deformation rather than utilization of skeleton’s pose; therefore, their

deformation is entirely different from the proposed method.

Different from PSD, algorithm of [62] generates pose-dependent wrinkles procedurally for

producing a cloth-like appearance. Since the method is limited to automatic generated wrinkle

patterns, they cannot handle arbitrary custom artist designed deformation styles as intended here.

5.3 Proposed Method

Fig. 5.1 shows the two proposed methods: spline skinning (Section 5.5) and deformation styles

(section 5.6), where deformation styles is built on top of spline-skinning.

5.3.1 Spline Skinning

Spline skinning evolves as a combination of spline aligned deformations [45] (SAD) and

conventional SSD. While SSD uses vertex weights to blend matrices, spline skinning uses the

weights to blend the results of multiple splines aligned deformations.

128 Chapter 5 Skeletal Animation

As shown in Fig. 5.1, SAD consists of two parts to animate a vertex. First, the transformation

from world-space into spline-space for the rest pose and second, the transformation from spline-

space into the world-space for the animated pose. The proposed spline skinning uses three splines

to drive the deformation of a vertex, where the influence of each spline is defined by the skinning

weight stored along with the vertex.

SAD provides high-quality bend and twist deformations without exposing unwanted artifacts,

which could occur in case of SSD, as shown in Fig. 5.2. Another advantage is their fast and stable

computation, which is an important property for real-time applications. Concerning the spline

function, a special polynomial based spline with variable exponent depends on only three control-

points for highest performance.

Since splines may further help to simplify complex skeletal animations, such as a spine or facial

animations, it to replace multiple joints of common skeletal animation systems by one single

spline. Regarding speed, the computation per vertex can be reduced by SSD. Spline skinning can

therefore be computed faster than QS and DQS, which is used in the CryEngine3.

5.3.2 Deformation Styles

To achieve reusable and pose dependent deformation behaviors that can be designed in an abstract

manner, deformation styles are proposed. As shown in Fig. 5.1, bottom, deformation styles are

based on spline skinning. They are integrated into the spline skinning’s spline aligned

deformation module.

Deformation styles are based on two sweep-based FFD variants, which are attached to each joint.

Deformation styles do not require any knowledge about the underlying geometry, which they are

applied to, as opposed to PSD.

The first two FFD variants are based on a high-resolution, radial FFD grid, which is wrapped

around the spline. They allow to achieve high resolution concentric deformation effects. The

effects include metal- and cloth-like deformations or even muscle bulges. The radial FFD grid is

driven by three scale textures, which are summed up to a final scale texture using a scale factor

(weight) for each texture. The weight depends on the angles of the spline's control points. The

three textures are utilized for frontal, lateral and radial scaling.

The second FFD variant is a rectangular scale envelope that is supposed to allow a simple

definition of more general scalings. The artist therefore draws three outlining curves for the

frontal, lateral and radial direction. Goals of the second variant include the design of folds to

prevent self-intersections such as the elbow or the modeling of major lateral bulges for soft-bodies.

Chapter 5 Skeletal Animation 129

Figure 5.1 Proposed spline skinning and deformation styles. Top: spline skinning, middle: spline aligned

deformations, bottom: deformation styles.

Figure 5.2 Bend and Twist deformations: left: FFD, middle: SSD, right: spline aligned deformation.

130 Chapter 5 Skeletal Animation

5.4 Splines

5.4.1 Fundamentals

In order to achieve spline-aligned deformation, finding a suitable spline-function is required. Arc-

spline and the polynomial Bézier-spline are candidates, because both can be computed very fast,

which is important for the use of spline based deformation in real-time applications. In order to

provide highest speed, three control points are required.

However, both functions do not naturally allow a modification of the curve stiffness without

adding another control point. The proposed approach lets the second control point basically

represent a joint's rotation center, and hence, additional control points complicate the computation.

To achieve a simple and easy handling, three control points pi (i=1,2,3) are chosen. The basic Bézier

spline function fb is used to create a new spline function fm , which provides an additional

parameter a for a continuous variable adjustment of the spline's stiffness. In Fig. 5.3, a

comparison among the spline functions is shown, together with the function of the additional

parameter a.

 The variable x defines the position on the spline:

 ∀ ∈ X0,1Z, ∀	l m 2, Δ67 $ 57 B 56,Δ78 $ 58 B 57. (5.1)

Conventional Bezier curve in n8, �o: n → n8: �o� # $ �1 B #7 ⋅ 56 	/ 	p2 ⋅ ⋅ �1 B #q ⋅ 57 	/ 7 ⋅ 58,�′o� # $ 2 ⋅ � B 1# ⋅ 56 	/ �2 B 4x# ⋅ 57 	/ 2 ⋅ ⋅ 58. (5.2)

The modified Bezier curve in n8, �S: n → n8: �S� # $ 56 / �1 B �1 B #R# ⋅ s67 / R ⋅ s78,�′S� # $ l ⋅ �1 B #Rt6 ⋅ s67 / l ⋅ Rt6 ⋅ s78. (5.3)

Chapter 5 Skeletal Animation 131

Figure 5.3 Spline functions: In the upper row, the short-listed spline functions are compared. The lower

row shows the ability of the spline to adjust the stiffness by parameter a.

132 Chapter 5 Skeletal Animation

5.4.2 Spline Aligned Deformation

In order to apply the proposed spline with variable stiffness for geometric deformations, it is

necessary to define a local coordinate-system around it, the so-called Frenet-frame, as shown in

Fig. 5.4. A complete orthonormal basis b can be computed for each position of the spline, where

the origin bO, normal bN, tangent bT and bi-normal bB are defined as follows:

 	u� # $ �Sv � #,	1 $ s67 � s78,	w� # $ 	1 � 	u� #,	�� # $ �S� #;

 $ X	1 ∣∣ 	w ∣∣ 	u ∣∣ 	� Z; (5.4)

 $ y	1 . 	w. 	u . 	�. 	1 . ! 	w. ! 	u . ! 	�. !	1 . " 	w . " 	u . " 	� . "0 0 0 1 z.

The origin of the coordinate frame is simply the spline function fm itself. Then, the tangent 	u is

equal to the spline's derivative f'm. The normal 	1 can be pre-calculated as it is perpendicular to

the three control points p1,2,3 and finally the bi-normal 	w can be computed as cross-product of the

normal bN and the tangent vector bT. The 4x4 transformation matrix B is built by arranging the

four computed vectors as column vectors.

Figure 5.4 The spline coordinate system: left: the spline function in violet together with the spline’s

coordinate system, where the spline’s tangent is indicated in blue, the normal in red, the bi-normal in green

and the origin of each coordinate system in yellow; right: an example deformation.

5.4.3 Spline Binding

Prior to the deformation, as shown in Fig. 5.5 all vertices of the target mesh are mapped

perpendicular to a specific position x on the spline. This is achieved by utilizing a plane based

Chapter 5 Skeletal Animation 133

binary search algorithm, starting at x=0.5. In the left side of Fig. 5.5 the color intensity of the

segments indicates the iteration depth of the binary search. The right side shows the plane used to

determine the direction for the next iteration step.

Figure 5.5 The binding process: (left) the perpendicular mapping of vertex v to the spline by using binary

search, (right) a way to determine the search direction in each step.

In order to determine the search direction for x at each step, the perpendicular constraint based on

the scalar product 〈⋅∣⋅〉, the vertex v, and the plane defined by bT and bO is utilized as follows:

〈 	u� # ∣∣ � B 	�� # 〉 $ }* 0,$ 0,~ 0,
	if	�	lies	in	front	of	the	plane,	if	�	lies	in	the	plane	�solved#,if	�	lies	behind	the	plane.				 (5.5)

The spline-basis representation v' of v is defined according to the spline's matrix B:

 �′ $
t6 ⋅ �. (5.6)

5.5 Spline Skinning

To achieve a usable result in character-animation, it is necessary to let each vertex of the

geometry be weighted by multiple splines; otherwise it is not possible to have branches (one bone

branching into bones two) in the skeleton. For assigning the weights per vertex, the conventional

way to paint the weight intensities via color on the geometry similar to a texture map is used. This

method has already proven its effectiveness in various 3D authoring tools such as Maya, 3DS

Max or Blender. An example can be seen in Fig. 5.6, where each of the red, green, and blue

colors is assigned to an individual rigged body part. The colors indicate the weight for each spline.

Red is related to the body spline, green to the shoulder and blue to the elbow. In overlapping areas

the weights are mixed, which results in color transitions. In Fig. 5.6, up to three splines influence

134 Chapter 5 Skeletal Animation

a single vertex �� . To preserve a correct scaling, all weights wi for each vertex must be

normalized to one. The resulting formula is written as follows:

′′T $
T ⋅
vTt6,�� $ ∑T�6P �T ⋅
Tvv ⋅ �. (5.7)

In Eq.(5.7), two different spline bases (
T 	l4)	
′T) are used. The basis of the actual pose is

defined by B, while B' defines the basis while binding65. In Eq.(5.7), the basis B''i is pre-computed,

which can be used to write the formula equal to conventional matrix skinning (SSD). In SSD, also

two matrices are used. The difference is that the matrices change depending on the position on the

spline curve.

Figure 5.6 Spline skinning: skinning weights

5.6 Deformation Styles

In order to allow a flexible customization by the artist of the spline-aligned deformation

(computed as in Eq.(5.7)), deformation styles is used, allowing pose-dependent modeling of a

joint's deformation that can be used to represent material behaviors of metal, cloth or muscles.

Basic spline skinning does not allow to model such material behaviors. Each style is created from

the combination of two pose-dependent FFD variants, where each of the two variant has its own

advantages that cannot be replaced by the other. In Fig. 5.7, two different deformation styles are

equally applied to three objects. The first method applies a radial scale envelope (Fig. 5.7, Style

65 Binding defines the process where the initial skeleton pose is stored for the undeformed mesh

Chapter 5 Skeletal Animation 135

1) while the second method uses a rectangular scale envelope (Fig. 5.7, Style 2). The radial scale

envelope (Fig. 5.7, Style 1) is used to model wrinkles and other high detail deformations. The

rectangular scale envelope (Fig. 5.7, Style 2) is used to avoid self-intersections and model radial

bulges. In the following, the deformation styles are detailed.

Figure 5.7 Deformation Styles

5.6.1 Radial Scale Envelope (Style 1)

5.6.1.1 Principle

The Radial Scale Envelope is shown as Style 1 in Fig. 5.7 and is designed to allow high resolution

skin deformation effects such as folds and wrinkles. The algorithm basically applies the

deformation by concentrically scaling a vertex v of the target object with respect to the spline

origin bO, as is shown in Fig. 5.8.

136 Chapter 5 Skeletal Animation

Figure 5.8 Radial Scale Envelope: The lower left side shows an example envelope while the upper right

side shows the concentric scaling of v in relation to the spline

As indicated by Eq.(5.8) , the scaling is determined by a radial scale function Srs, which depends

on the two-dimensional position (x,α) on the envelopes surface and the pose of the joint. The

variable x defines the position on the spline. The pose is defined by the joint's twist � and the

joint's bend-angle β, which is based on the two vectors ∆12 and ∆23. The angle α denotes the angle

between the vertex v and the spline's bi-normal bB with respect to the spline's origin bO. Hence,

the deformation function Drad is defined to evaluate the deformed vertex as follows:

 cNR���v# $ �v ⋅ �NL� , J, �, �#,∀J, � ∈ X0, πZ, ∀� m 0. (5.8)

Since the scaling needs to be applied in spline space, v' is used instead of v.

This simplifies the calculation, as the origin in spline-space is bO and the multiplication of v' by

any scalar is equal to scaling v' with respect to bO.

5.6.1.2 Radial Scale Function and Textures

The scale function Srs computes the scaling based on three scale textures, shown in Fig. 5.9’s

upper row. The first texture Tf is used for frontal scaling, the second for lateral (Tl), and the third

for radial (Tr). The weight distribution for the three textures can be seen in Fig. 5.9, lower row.

The weight wf for the frontal texture Tf represented by red, wl for the lateral Tl by green, and wr for

the radial Tr by blue. The coordinate system , J is defined with respect to a cylindrical coordinate

system.

Chapter 5 Skeletal Animation 137

Figure 5.9 Scale Textures: The upper row shows the three scale textures that were used to create Style 1 in

Fig. 5.7 and an example object where the textures are applied. The lower row shows the pose-dependent

weight calculation to apply the three textures, where red corresponds to the weight of the frontal scale

texture, green to the lateral and blue to the radial.

The scale factor �NL in Eq.(5.8) for a certain vertex v is computed by sampling all three textures at

the texture-coordinates� , ���, and by evaluating the three pose-dependent weights �T	�T��.�.N# to

compute the scaling result �NL as follows:

 ∀�� , 	�� , 	�N ∈ X0,1Z,												∀�sum, 	U�, 	U� , 	UN , 	��, 	�� , 	�N m 0,

(5.9)

 �� $ max�Bcos�J#, 0# ⋅ �,�� $ ∣∣�sin�J##∣∣ ⋅ �,�N $ �,�sum $ �� / �� / �N ,

 U� $ �� ⋅ �� � , J�� ,U� $ �� ⋅ �� � , J�� ,UN $ �N ⋅ �N � , J�� ,

 �NL $ U� / U� / UN
max�1, �sum# / max�1 B �sum, 0#.

138 Chapter 5 Skeletal Animation

To achieve a smooth transition between the frontal, the lateral, and the radial scale texture on the

3D object based on the angles α and γ, functions are used.

The weights for the frontal and the lateral texture are computed based on the angle α and the

radial weight based on the twist angle γ. In Eq. (5.9), wsum represents the sum of all weights, and ti

(i=t,l,r) the weighted texture samples. In order to preserve unity scaling for identity textures at any

pose, Eq.(5.9) meets the following condition:

∀ , J	such	that	��,�,N � , ��� $ 1:	�NL� , J, �, �# $ 1,	for	all	�, �. (5.10)

5.6.2 Rectangular Scale Envelope (Style2)

5.6.2.1 Principle

The rectangular scale envelope is shown as Style 2 in Fig. 5.7 and allows the design of the

contour’s deformations. The algorithm basically applies scaling of a vertex v in the two directions

bB and bN independently, as shown in Fig. 5.10. This is very different from the former radial

method that applies a concentric scaling.

Figure 5.10 Rectangular Scale Envelope: The left side shows the application to an example object while

the right side shows the scaling of � corresponding to 	w and 	1

Chapter 5 Skeletal Animation 139

The purpose of the rectangular approach is the modeling of major frontal folds or lateral effects

such as creating bulges. In order to design the deformation, the artist needs to have freedom to

create three functions, which perform the scaling in the frontal, lateral, and radial direction.

The scaling is performed by two scaling functions Si (i=f,l), whereas Sf applies frontal scaling in

direction of bB , and Sl the lateral in direction bN. More specifically, the deformation function Drect

can be written as follows:

 cNOM���v# $ y �gv ⋅ ��� , �, �#�hv ⋅ ��� , J, �, �#��′1 z. (5.11)

The rectangular scaling is also calculated in spline space, and therefore v' instead of v is used. The

spline-space representation v' of v is very handy, because the x-axis in spline space is along bN and

the y-axis along bB. This allows an easy handling of the two scaling functions Sf (frontal) and Sl

(lateral).

Similar to before, the angle α defines the angle between v and bB with respect to bO. The two

angles β and γ define the spline's pose.

Figure 5.11 Rectangular Scaling: The upper row shows the three scale functions. The lower row shows

the pose-dependent weights.

140 Chapter 5 Skeletal Animation

5.6.2.2 Rectangular Scale Functions

For designing the rectangular scale envelope, the artist can define three curves Ci (i=f,l,r), each of

which directly affects the contour of the deformed object in frontal (Cf), lateral (Cl) and radial (Cr)

directions, respectively.

Fig. 5.11, upper row shows the three curves that are used to create Style 2 in Fig. 5.7. In the

example object on the right, the scale factors can be seen while bending. Green represents the

lateral and red for the frontal scaling. The three curves are basically applied to the two scaling

functions Sf,l the same three directions the textures Tf,l,r have been applied to Srs before. The only

difference to the previous radial scaling is that frontal and lateral scaling are treated separately.

The calculation of the lateral weight w'l can further be simplified as it does not depend on α as

opposed to the radial scaling; thus, Sf and Sl are as follows.

 ∀��, �� , �N , �� , �� , �N , ��v, �L�S6, �L�S7 m 0,

(5.12)

 ��v $ �,�L�S6 $ �� / �N ,�L�S7 $ ��v /�N,
 �� $ �� ⋅ ��� #,�� $ ��v ⋅ ��� #,�N $ �N ⋅ �N� #,
 �� $ �� / �N

max�1, �L�S6# / max�1 B �L�S6, 0#,
�� $ �� / �N

max�1, �L�S7# / max�1 B �L�S7, 0#.

To achieve the pose-dependent weights that are used to define the importance of each of the curve

Ci (i=f,l,r), a couple of example poses are presented in Fig. 5.11, lower row, where the weights are

indicated by color. The lower row shows the pose-dependent weights. Red corresponds to the weight of

the frontal scale function, green to the lateral and blue to the radial. The intensity of each color represents

the intensity value of the respective weight.

For the computation of Sf and Sl in Eq.(5.12), three new variables are introduced in addition to Srs:

is, the new lateral weight wl ', the frontal weight wsum1 and the radial weight wsum2.

Similar to the radial scaling function Srs, the frontal and lateral scaling functions Sf and Sl also

preserve unity scaling (Si (i=f,l)) for identity curves (Ci (i=f,l,r)).

5.7 Deformation Styles and Spline Skinning

The vertex’s eventual coordinates vf calculated by the deformation are computed as follows (i

represents the index of the spline curve):

 �� $ ∑T�6P �T ⋅
T ⋅ cNOM��cNR��
′Tt6 ⋅ �##. (5.13)

Chapter 5 Skeletal Animation 141

In Eq.(5.13), two different spline bases are used: B and B'. The basis of the actual pose that

changes during the animation is defined by B, while B' defines the initial basis for binding that

remains constant all the time. The radial deformation, the rectangular scaling, and finally the

spline deformation are applied successively for each of the n=3 splines (Fig. 5.6). Then the three

partial results of each i are summed up using the skinning weights wi for computing the final

result.

In transition areas where two or more splines meet, styles are blended automatically, where the

blended styles depend on the skinning weights.

Figure 5.12 GPGPU based accelerations of the computations.

5.8 Fast Computation based on the GPU

To accelerate the computations, the OpenGL shading language GLSL and the render-to-vertex-

buffer technique [63] are used. The render-to-vertex-buffer technique can be realized in OpenGL

by using the frame-buffer-object (FBO) and the pixel-buffer-object (PBO) extension to perform

the deformation.

To achieve an efficient implementation of the proposed GPU based algorithm, several

improvements, as well as a couple of restrictions are made to the proposed system.

142 Chapter 5 Skeletal Animation

The proposed method consists of three passes, which are overviewed by Fig. 5.12. In the first pass,

all spline matrices are computed and stored inside a temporary texture. In the second pass, the

transformed geometry is computed, and in the third pass the geometry is visualized. The entire

deformation, i.e. spline skinning and deformation styles, is applied in pass two.

One major key to this system's speed is the use of the Pixel Shader for computing the deformation

rather than using the Vertex Shader. The reason is that not only the Pixel Shader is much more

flexible but also it has much more computational power on most recent graphics cards. Using the

Pixel Shader for general computations is a well-known technique that is often referred to as

general purpose GPU computations (GPGPU), as the computed result of the Pixel Shader is

stored in a temporary buffer, the FBO, in GPU memory and might be used for any purpose. The

second optimization is of the separation of the evaluation of the spline basis B and the

deformatiom of the vertices. Instead of computing the spline basis for each vertex individually,

which causes heavy overhead for the computation, this implementation samples the spline at a

fixed number of positions and stores the result into three temporary textures in the pass 1 in the

Fig. 5.12. These textures are then passed to the per vertex computation of the deformation in the

Pass 2 in Fig. 5.12. The pass 3 is responsible for visualizing the object by utilizing the

transformed vertices sent from the pass two.

5.8.1 Pass 1

Pass 1 samples the spline at a fixed number of positions and stores the resulting spline bases B

(3 � 4 matrix) into three temporary 16-bit RGBA floating point textures. Table 5.1 shows all

formats used here in detail.

In OpenGL, a pixel shader can use inputs from constant program variables, from textures and

from the vertex shader. The inputs for the Pixel Shader program are the spline control points and

all the additional spline parameters such as twist and stiffness. These inputs are passed as textures,

as this is the only possible solution to manage a large number of spline curves, while the matrix

outputted from the pixel shader program is written into three frame buffer objects (FBOs) in

parallel. Each FBO is linked to a texture to be used by the pass two.

Table 5.1 Texture formats: Here an overview of the used texture and buffer formats.

Chapter 5 Skeletal Animation 143

5.8.2 Pass 2

In the second pass, the deformation for each vertex is computed. Of all three passes, this pass is

the most important, as it performs the spline skinning and the deformation styles, and also the

most time-consuming. For the input, Pass 2 requires 12 textures (Table 5.1) that contain all data

for the deformation. The 12 textures are divided into the following parameters: the inverse initial

matrices
′Tt6 (3 textures), three scale textures (Section 5.6.1) and scale curves (Section

5.6.2)(together one texture), vertices � (one texture), vertex weights �T , bone id's, normal vectors

and spline offsets (stored in one texture), and, finally, the spline matrices
T	computed by pass 1

(3 textures).

Figure 5.13 Shared Texture 1. Vertex normals (N), weights (W), bone indices (I) and spline offsets (O)

are stored in one texture. The NWIO pattern applies for the empty space of the texture as well.

144 Chapter 5 Skeletal Animation

Figure 5.14 Shared texture 2. Scale textures and scale curves are stored in one large texture. Each texel’s

RGBA value in the texture (left) is used as defined on the right side.

Concerning the texture that stores the vertex weights, bone ID's, vertex normals and spline offsets

together, storing all of these elements in an interleaved way is used as optimal cache use as shown

in Fig. 5.13. This is because the GPU does not read its RAM byte by byte. It reads at least 8 bytes

at once from a memory location; therefore, the read accesses are minimized using an interleaved

data structure.

The spline offsets are equal to the above mentioned position x on the spline. The created structure

requires 4 pixels in the texture (texels).

In case of the texture sharing the three scale textures and the three scale curves, a small texture

atlas as shown in Fig. 5.14, left side, is created to reduce the number of used textures.

The large texture consists of six parts: three scale textures and three scale curves. The three scale

textures require most of the space, while the three scale curves only require one texel width at the

right most column. The right half of Fig. 5.14 shows how each texel of right column of the texture

is used. The scale factor and the corresponding normal vector are stored together in one RGBA

texel. This is very similar to storing a bump-map and a normal map in one texture. The stored

scale factor is required for the deformation of the vertex, while the normal vector of the scale

function as well as the scale curve is needed for deforming the normal vector.

A detail in the pixel shader implementation is the use of texture-filtering during sampling the

spline matrices. Texture-filtering helps to efficiently use the graphics hardware to linearly

interpolate between two spline matrices. Without this filtering, the spline would show strong

aliasing artifacts, as can be seen in Fig. 5.15.

Chapter 5 Skeletal Animation 145

Figure 5.15 Spline discretization: Pre-computing all splines is one of the key improvements in the

implementation to increase the speed.

Concerning the deformation, the deformation style was only applied to the most significant spline

curve of the three spline curves with the greatest weight. This significantly speeds up the

computation without showing major drawbacks in the appearance of the deformed geometry.

5.8.3 Pass Three

The third pass is the rendering pass, which visualizes the computed geometry. First, the FBO that

has been computed in Pass Two is copied it to a pixel buffer object (PBO). The PBO is then used

as a vertex buffer object (VBO) for visualizing the mesh as OpenGL vertex array.

5.9 Experimental Results and Discussion

5.9.1 Experimental Conditions

For the experiments, an NVIDIA7800 GTX graphics card and a Pentium4 3.2 CPU was used. The

data used for the experiments has been common triangle data 3D models.

Various poses are created to show the flexibility of the proposed approach. Figure 5.16 shows

three poses: The bind pose (left), a basic bend deformation (middle) and a combination of bending

and twisting (right). The underlying skeleton was created by attaching the arm-spline to the upper

control point of the body-spline and the elbow-spline to the right control point of the arm-spline.

Concerning the pose in the middle, even the large scale deformation near the shoulder does not

lead to self-penetration. All the three poses show correct, seamless transitions between deformed

and un-deformed areas. A simple animation sequence including a muscle deformation style is

shown in Fig. 5.17.

5.9.2 Non-Collapsing Geometry

Non-collapsing geometry for the proposed spline skinning is shown in Fig. 5.2. There, spline

aligned deformation is compared to FFD and SSD. Different from SSD and FFD, spline aligned

deformations do not expose deformation artifacts. Further examples including bend and twist

operations are shown in Fig. 5.16.

146 Chapter 5 Skeletal Animation

Figure 5.16 Basic Spline Skinning: Three poses for an animated chest-arm-shoulder model. The binding

pose (left), simple bend operation (middle), and, finally, bending combined with two twist operations, for

the hand and for the body (right).

Figure 5.17 Spline Skinning with a simple muscle deformation style in 8 frames.

Chapter 5 Skeletal Animation 147

Figure 5.18 Facial Animation: Lips and cloth folds can be animated using spline skinning. Up-left the

final animation and up-right the bind pose, where each color R,G,B is assigned to one spline. The lower part

shows an animation sequence.

Figure 5.19 Spline Skinning compared to matrix skinning for multiple joints.

148 Chapter 5 Skeletal Animation

5.9.3 Small Number of Control Points

It is possible to apply skinned skeletal animation efficiently to facial animation as Fig. 5.18

demonstrates. Using just two splines, it is possible to represent the lips of a character. Other

methods such as DQS or SSD require more joints for achieving the same result. In Fig. 5.18, the

final result can be seen on the left, while the right side shows the initial binding pose including

vertex weighs for each spline.

A direct comparison from single spline to matrix skinning using multiple control joints to

approximate a curve is demonstrated in Fig. 5.19.

5.9.4 Deformation Style Results

Fig. 5.20 demonstrates metal-like behaviors, where a cuboid is used for creating snapshots from

various poses.

In Fig. 5.21, the proposed method's ability to design transferable muscle bulges is presented. The

left side shows two characters using conventional spline-skinning, while the right side includes

deformation styles.

Concerning deformation styles, further results can be seen in Fig. 5.7, where two styles are

applied to three objects. Since the object’s shape is very different, the geometry independence of

the proposed method can be demonstrated successfully.

Chapter 5 Skeletal Animation 149

Figure 5.20 Metal: This Figure shows the animation of designed metal, which smoothly deforms as the

pose changes. Upper row: deformation styles are applied; lower row: spline skinning without deformation

styles.

Figure 5.21 Muscles: Created muscles can easily be applied to different characters simultaneously.

150 Chapter 5 Skeletal Animation

Figure 5.22 Muscles on David:middle: without, right: with.

Figure 5.23 Hollow materials: Here an animation of crunching an empty can.

It can be confirmed that the surface details of the character in the lower row work well along with

the applied muscle-style. It is also possible to apply the style to an anatomically correct human

body, as shown in Fig. 5.22. The same style is applied to the right arm of the David statue. The

rightmost and middle images show the results with and without style, respectively.

An example for modeling the deformation of a hollow material can be seen in Fig. 5.23. The

realism is improved by displacing the spline origin bO along the binormal bB while applying Drad

and Drect.

The successful prevention of self-intersections by using deformation styles can be seen in Fig.

5.24. It is an example for designing lateral bulges, where all the three curves that are shown in Fig.

5.10 are modified by defining the curves as functions. The imitation of cloth is demonstrated by

Fig. 5.25, where the applied cloth style showing wrinkles near the knee region can clearly be

recognized. The textures that are used in the results were painted using conventional imaging

tools. However, for an improved workflow, interactive texture-painting in a WYSIWYG66 fashion

might be advantageous.

66 WYSIWYG is the abbreviation of “What You See Is What You Get”.

Chapter 5 Skeletal Animation 151

Figure 5.24 Self-intersections: Demonstrated are self-intersections (up-left) and the efficient removal of

self-intersections (up-right) as well as modeled lateral bulges. The used curves are shown in the lower row..

152 Chapter 5 Skeletal Animation

Figure 5.25 Cloth: This example shows the algorithm’s ability to imitate cloth-like wrinkles. Upleft and

down-left: non-style version. Up-right and down-right: deformation styles version. The red circles show the

affected region.

Chapter 5 Skeletal Animation 153

Figure 5.26 Benchmark results: Spline skinning indicates basic spline aligned deformation, Radial adds

Drad, Rect adds Drect and Rect+Radial adds both.

5.9.5 Computation Speed

The benchmark of the proposed method is shown in Fig. 5.26, where Radial+Rect indicates that

radial and rectangular deformation styles are enabled, Rect indicates that only the rectangular

deformation styles are enabled, Radial indicates that only the radial deformation styles are

enabled, Spline Skinning indicates that deformation styles are turned off, and SSD represents

matrix skinning. The number left to the objects represent the number of copies that were rendered

simultaneously to achieve a vertex count of about one million for benchmarking each scene.

In case that only basic spline skinning is used, the proposed algorithm gets close to SSD and

reaches the speed of 85 Million vertices per second, while the original SSD reaches 91 Million

vertices per second.

If the proposed deformation method (Radial+Rect) is switched on, the speed decreases to 30M

vertices per second, which is still satisfactory for real-time applications.

154 Chapter 5 Skeletal Animation

Even each scene used (one scene corresponds to one row in Fig. 5.26) for benchmarking consists

of about one million vertices, the speed is not equal for all objects, which might be caused by an

implementation issue of the proposed method. The rendering context of the frame-buffer-object

(FBO) is switched for each object, which is a relatively expensive operation. However, there is no

direct relation to computing the deformation.

The detailed timing is shown in Table 5.2. It is created to measure the proposed method's

performance in more detail. The timing is investigated for two scenes – cuboid and cylinder

(upper-most row and second upper-most row in Fig. 5.26).

Table 5.2 Timing breakdown:

The skinning based on three spline-curves, each of which are approximated by 32 samples, was

also computed for each of the two objects. The scale texture resolution is 32 � 64 pixels,

concerning the timing breakdown, it can be seen that the major time consumption is caused by the

two deformation methods (radial and rectangular deformations), followed by the spline-skinning

(spline deformation). Pre-calculating the spline matrices requires much less time.

The step called Copy FBO to VBO is required by the OpenGL architecture and does a complete

copy of all vertices from the FBO to the vertex-buffer-object (VBO). The final step for rendering

the scene is relatively fast, as complex lighting evaluations were not included. Character scenes

consisting of about 1 Million vertices were created for benchmarking, in order to get

representative results.

Summary: The proposed spline-based skinned skeletal animation system outperforms the old

version of the proposed spline skinning method [46] by factor three for the basic spline skinning

without deformation-styles. The proposed method's speed without deformation-styles further gets

Chapter 5 Skeletal Animation 155

close to the performance of SSD, which is often referred to as the fastest skinned skeletal

animation system. In case of deformation styles are added, the proposed method still shows a very

competitive speed, as the vertex deformation rate remains high at 30 Million vertices per second

on the utilized testing system.

5.9.6 Re-Usability

The proposed method allows the abstract design of pose-dependent deformation behaviors for the

imitation of complex material deformations. Once designed, a style can immediately be applied to

an arbitrary number of joints simultaneously, as shown in Fig. 5.21. This saves time for the artist

during the modeling phase, and may further save memory during run-time, as each style needs to

be stored only once.

5.9.7 Other contributions

The following items are not included in this chapters’ goals, but it can be said that these are

features of the proposed method.

Simplicity: The proposed algorithm is based on simple mathematics and does not contain

complex data structures or the requirement of comprehensive mathematical libraries. It is

assumed that the implementation is feasible in a reasonable time without complications.

Furthermore, the designed deformation styles cover the complete pose-space of a joint and

hence avoid the usage of radial basic functions for the interpolation between certain poses.

Memory consumption: In contrast to the GPU-based spline-aligned skeletal animation system

[46], where each vertex and each normal of the animated mesh were required to be stored three

times (once for each spline), the proposed algorithm requires them to be stored only once.

5.9.8 Comprehensive Evaluation

For the comprehensive evaluation, multiple related methods are compared: the proposed spline

skinning, the proposed deformation styles, QS, DQS, matrix skinning, and matrix skinning

with PSD. Table 5.3 shows the general comparison in terms of speed, deformation artifacts,

support to solve for multiple conventional joints, re-usability and support for custom pose

dependent deformations. Figure 5.27 and Fig. 5.28 show the side by side comparison of

matrix skinning (SSD), QS, DQS and the proposed spline-skinning.

156 Chapter 5 Skeletal Animation

Table 5.3 Related methods and their features.

Figure 5.27 SSD, DQS and Spline Skinning Methods Compared (1): upper row: twist operation, lower

row: bend operation

Chapter 5 Skeletal Animation 157

Figure 5.28 QS and DQS Skinning Methods Compared (2). Left: artifact-free twist operation; right:

cloth deformation. Images with courtesy of Ladislav Kavan, Skinning with Dual Quaternions [20]

As for the performance compared in Table 5.3, it turns out that basic matrix skinning (SSD) is

the fastest method, followed by spline skinning as second fastest, then PSD, QS (linear), DQS,

spline skinning with deformation styles and QS (spherical).

Basic Skinning

Matrix skinning is fastest but not artifact-free, as shown in Fig. 5.27. Matrix skinning exposes

the candy-wrapper effect as can be seen in Fig. 5.27, upper row, left for twisting deformations.

It further exposes collapsing geometry, Fig. 5.27, lower row, left, for bending deformation.

Methods that improve upon this short-coming are QS and DQS. Both methods solve for the

candy-wrapper artifact exposed by SSD by changing the interpolation domain from matrices to

quaternions and dual quaternions. The efficient prevention of the candy-wrapper effect is

demonstrated in Fig. 5.28, left side: the hand geometry does not collapse near the wrist during

the twist operation for QS and DQS. The advancement of DQS over QS is demonstrated in Fig.

5.28, right side. Discontinuities for the cloth deformation exposed by QS are avoided with

DQS.

DQS improves on matrix skinning and QS, but it exposes bulging artifacts while bending, as

Fig. 5.27, lower row, center shows.

The proposed spline skinning, Fig. 5.27, left (upper and lower row), can solve for this issue

and deform the geometry artifact-free at high performance.

As for PSD, it is an example based method built on top of SSD. It will show artifacts equal to

SSD if no example poses are defined. It is up to the artist to modify each vertex for each pose

individually to avoid any artifacts or create custom deformations. Therefore, even PSD is fast

and able to solve for deformation artifacts, but it does not solve them automatically as spline

skinning. Furthermore, PSD requires extra memory for each customized vertex and each pose.

Creating an artifact-free deformation result for every pose using PSD requires a significant

amount of memory.

158 Chapter 5 Skeletal Animation

Custom Deformations

For achieving custom deformations PSD and the proposed Deformation Styles are compared in

Table 5.3. As for the computation speed, PSD [58] is significantly faster than the proposed

Deformation Styles. Further, both methods are able to avoid self-intersections and to create

custom deformation styles such as muscles or cloth. Here, PSD is more flexible in terms of the

vertex movement. While the proposed deformation styles method is limited to a concentric

vertex movement with respect to the spline, PSD allows arbitrary movements of the vertices.

However, in case of PSD, each vertex for each pose needs to be hand crafted, while

deformation styles lets the artist create the deformations for all poses at once with three

textures and three curves. Moreover, deformation styles allows one style template to be

applied immediately to any number of target joints and target characters, which is a significant

improvement over existing methods including PSD. It saves time for the artists and reduces the

memory consumption as well.

In total, the proposed method is best.

5.9.9 Limitations

5.9.9.1 Spline Skinning

Even though the proposed method has many advantages in the design of high quality

deformations, there are also certain limitations. The first one is the volume preservation. Since the

proposed method is completely dependent on the artist's design, it is up to the artist to design a

deformation that seems to preserve the volume or one that models a hollow material and does not

preserve it.

5.9.9.2 Deformation Styles

The second limitation is related to PSD. As opposed to PSD, which allows each vertex of a target

mesh to be modeled pose-dependently in an arbitrary manner, the proposed deformation styles

method can only affect vertices by the constraints of sweep based FFD; therefore, in an

orthogonal direction to the spline curve, as mentioned in the previous section. The last issue is

concerned with self-intersections. The proposed method neither computes nor automatically

prevents them; however, the artist can create deformation styles that give the impression of an

intersection-free deformation.

Chapter 5 Skeletal Animation 159

5.10 Conclusion

This chapter has proposed two skeletal animation methods that can achieve the four goals, which

are categorized into two groups: (1) artifact-free, fast computation, and few control joints, and (2)

re-usability. To achieve the goal group (1), this thesis has proposed a Spline Skinning based on

spline aligned deformations and blending multiple spline curves using vertex weights. To achieve

the goal group (2), this thesis has incorporated deformation styles into the above-mentioned

Spline Skinning so that pose dependent deformations can be designed by defining three scale

textures for detailed deformations and three scale curves, which can be re-used for skeletal objects

with any number of joints.

Experiments for exploring the validity of the proposed method were conducted using multiple

triangle models together with manually rigged skeletons. The experimental results and discussions

are summarized as follows.

Goal group (1)

• Artifact-free: The proposed method does not expose deformation artifacts, while related

methods expose the following problems: Matrix skinning exhibits collapsing geometry

and the candy-wrapper artifact, DQS exhibits unnatural bulges for bending deformations,

and QS exhibits discontinuities for complex deformations.

• Fast computation: As a result of bench marks, it turns out that SSD is the fastest, and the

proposed method is second fastest (90 to 96% of SSD), but faster than QS and DQS.

• Reducing the number of joints: The experimental results show that the proposed method

achieves a complex facial lip animation with only two spline curves and spine

deformations by only one spline.

• As a result of the comprehensive evaluation it is confirmed that the proposed method

works best for the above-mentioned three goals.

Goal group (2)

• Re-usability: Experimental results show that the proposed method can apply a

deformation style to two different characters successfully.

For the proposed spline skinning, it is limited to a number of three control points. Future work

might include experiments with more control points. For deformation styles, the limitation is in

terms of computation speed as the proposed method is significantly slower than PSD. Future work

160 Chapter 5 Skeletal Animation

might include improving the speed and further applying the deformation textures to the surface of

the geometry as bump map.

Chapter 6 Conclusion and Future Work 161

 Conclusion and Future Work Chapter 6.

6.1 Conclusion

The goal of this thesis is to improve methods for visualizing common elements in video game

applications by overcoming the limitations of existing methods. The common elements which this

thesis deals with include terrain, static objects, and skeletal animation. This thesis explores how to

improve each of the three common elements as follows.

Chapter 1 is the introduction of this thesis. This chapter claims that this thesis explores how to

improve the visualizations of the common elements to be embedded into a 3D engine.

Chapter 2 explains 3D engines and their relationship to Game Engines as well as 3D engines’

functions.

Chapter 3 has proposed a nested CB (Clip-Box) based approach that is able to generate procedural

volumetric terrains with unlimited size without pre-computation in parallel to visualization. A CB

consists of a cubic regular grid of voxels and the corresponding triangulation. Nested Clip-Boxes

that utilize mathematical functions that define the terrain allow the immediate and pre-

computation free generation and concurrent visualization of arbitrary sized volume data.

Experiments using data generated from terrain functions, data from existing volume data sets and

height-map data prove that the proposed method can generate terrains with unlimited size without

pre-computation and then visualize them concurrently.

Chapter 4 has proposed a raycasting based method for the fast visualization of complex RLE

compressed voxel data scenes without consuming much memory. The proposed method improves

the original voxel forward projection algorithm in several ways so that complex scenes are

efficiently visualized with low memory consumption is achieved. For low memory consumption,

this thesis proposes a new data structure for RLE. For fast computation, the proposed method is

completely optimized for highly parallel single instruction multiple data processing on the GPU

and uses newest NVIDIA CUDA technology. Experimental results show that the proposed

method and Qspat consume least memory, and that the proposed method and some related

methods are fastest and faster than Qsplat. The comprehensive evaluation based on these results

indicate that the proposed method is best in terms of the goals of this chapter.

162 Chapter 6 Conclusion and Future Work

Chapter 5 has proposed two skeletal animation methods that can achieve the four goals, which are

categorized into two groups: (1) artifact-free, fast computation, and few control joints, and (2) re-

usability. To achieve the goal group (1), this thesis has proposed a Spline Skinning based on

spline aligned deformations and blending multiple spline curves using vertex weights. To achieve

the goal group (2), this thesis has incorporated deformation styles into the above-mentioned

Spline Skinning. Results of experiments that confirm whether the goal group (1) is achieved show

that the proposed method achieve artifact-free and small number of control joints as opposed to

related works and that the computation speed is the second fastest. Comprehensive evaluation

based on these results indicates that the proposed method is best. Results of experiments that

confirm whether the goal group (2) is achieved show that the proposed method can apply a

deformation style to two different characters successfully.

Chapter 6 Conclusion and Future Work 163

6.2 Future Work

In case of procedural volumetric terrain, Chapter 3, additional studies to include better frame-to-

frame caching of the generated geometry as well as exploring different methods for the

visualization could be conducted. As graphic cards become more versatile, ray-casting the volume

data rather than converting the data into polygons becomes an option.

The future work of voxel ray-casting, Chapter 4, includes exploring ways of streaming the voxel

data into the GPU, in order to allow large and complex scenes to be visualized.

For skeletal animation and deformation styles, Chapter 5, further research can be carried out on

rendering detailed surfaces with few polygons. For that, deformation styles might not only be

applied to the geometry, but also the surface by using bump-mapping e.g.

For long term, based on this thesis’ achievements, the proposed modules could be embedded in

modern 3D engines such as CryEngine 3.

164 Bibliography

Bibliography

[1] L. Williams, "Casting curved shadows on curved surfaces," SIGGRAPH '78, vol. 12, no. 3, pp. 270-274 , 1978.

[2] F. Crow, "Shadow Algorithms for Computer Graphics," SIGGRAPH 1977, vol. 11, no. 2, pp. 242-248, 1977.

[3] Z. a. T. N. Brawley, Parallax Occlusion Mapping: Self-Shadowing, Perspective-Correct Bump Mapping Using Reverse Height Map

Tracing., 2004, pp. 135-154.

[4] V. MAGNENAT-THALMANN, "From early draping to haute couture models: 20 years of research. The Visual Computer 21, 8–10

(2005), 506–519.," 2005.

[5] M. S.Rusinkiewicz, "“QSplat: A Multi-resolution Point Rendering System for Large Meshes” Siggraph 2000, 343 – 352," 2000.

[6] J. R. Wright and J. L. Hsieh, "A voxel-based, forward projec-tion algorithm for rendering surface and volumetric data," in VIS’92:

Proceedings of the third conference on Visualization, 1992.

[7] D. W. C.Erikson, ""HLODs for faster display of large static and dynamic environments",SI3D '01, 111—120," 2001.

[8] F. E.Gobbetti, ""Far Voxels: A Multi-resolution Frame-work for Huge Complex 3D Models", Siggraph 2005, 878 – 885," 2005.

[9] C. a. N. F. a. S. M. a. G. S. a. E. E. Crassin, "Interactive Indirect Illumination Using Voxel Cone Tracing," Computer Graphics Forum

(Proceedings of Pacific Graphics 2011), 2011.

[10] P. a. K. D. a. R. W. a. H. L. F. a. F. N. a. T. G. A. Lindstrom, "Real-time, continuous level of detail rendering of height fields,"

SIGGRAPH '96, 1996.

[11] M. D. M. C. M.-W. Duchaineau, ""ROAMing terrain: real-time optimally adapting meshes", VIS'97, 81—88," 1997.

[12] H. F.Losasso, ""Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids", Siggraph 2004, 769-776," 2004.

[13] M. T. Ryan Geiss, "“NVIDIA Demo Team Secrets – Cascades”, technical presentation at the Game Developers Conference 2007,"

2007.

[14] E. G. S. M. J. G. Adrien Peytavie, "Arches: a Framework for Modeling Complex Terrains," Eurographics 2009, Volume 28, pp.457—

467, 2009.

[15] J. Olick, "Beyond Programmable Shading," in Course at Siggraph, 2008.

[16] J. H. Clark, "Hierarchical Geometric Models for Visible Surface Algorithms," Communications of the ACM, vol. 19, no. 10, pp. 547-

554, 1976.

[17] P. K. a. J. F. a. F. D. a. D. Bartz, "“Lossless Volume Data Compression Schemes, SimVis 2007, pp. 169-182," 2007.

[18] L. R. T. D. MAGNENAT-THALMANN N., "Joint-dependent local deformations for hand animation and object grasping. In

Proceedings of Graphics Interface ’88 (1988), pp. 26–33.," 1988.

[19] Z. J. Kavan L., "Spherical blend skinning: a real-time deformation of articulated models. In SI3D ’05: Proceedings of the 2005

symposium on Interactive 3D graphics and games , pp. 9–16.," 2005.

[20] C. S. O. C. Z. J. Kavan L., "Dual quaternions for rigid transformation blending. Technical report TCD-CS-2006-46, Trinity College

Dublin," 2006.

[21] V. Kajalin, Screen space ambient occlusion, CryTek, 2007.

[22] M. N. S. N. Pattanaik, "Real-Time Realistic Rendering," ASC2002 23rd Army Science Conference 2002, 2002.

[23] J. v. Waveren, "ID tech 5 Challenges," in Siggraph 2009, 2009.

Bibliography 165

[24] H. Nguyen, Gpu gems 3, Addison-Wesley Professional, 2007.

[25] M. P.Prusinkiewicz, ""A Fractal Model of Mountains with Rivers", Graphics Interface '93, 174-180," 1993.

[26] B. Gregorski, "“Interactive View-Dependent Rendering of Large IsoSurfaces”, Visualization 2002, 475 – 484," 2002.

[27] F. E. F. F. R. P.Cignoni, ""Adaptive tetrapuzzles: efficient out-of-core construction and visualization of gigantic multiresolution

polygonal models", Siggraph 2004, 796—803," 2004.

[28] P.Lindstrom, ""Out-of-Core Construction and Visualization of Multiresolution Surfaces", SI3D '03, 2003, 93-102," 2003.

[29] G. G. F. P. C. L. Borgeat, ""GoLD: Interactive Display of Huge Colored and Textured Models", Siggraph 2005, 869 – 877," 2005.

[30] H. W.E.Lorensen, ""Marching cubes: A high resolution 3D surface construction algorithm", SIGGRAPH '87, 163—169," 1987.

[31] C. M. C.C.Tanner, ""The clipmap: A virtual mipmap", ACM SIGGRAPH 1998, 151-158," 1998.

[32] R. a. A. H. G. G.M.Treece, ""Regularised marching tetrahedra: improved iso-surface extraction ", Computers and Graphics 1998,

23(4):583-598," 1998.

[33] T. J. a. F. L. a. S. S. a. J. Warren, "“Dual contouring of hermite data”, SIGGRAPH '02, 339—346," 2002.

[34] C. D. Hansen and C. R. Johnson, "Visualization Handbook," in Visualization Handbook, Academic Press, 2004, pp. 7-11.

[35] P. G. Lacroute, ""Fast volume rendering using a shear-warp factorization of the viewing transformation", SIGGRAPH '94, pp.451--

458, 1994," 1994.

[36] I. W. S. P. C. H. Aaron Knoll, ""Interactive Isosurface Ray Tracing of Large Octree Volumes", IEEE Symposium on Interactive Ray

Tracing, pp.115-124," 2006.

[37] C. Crassin, F. Neyret, S. Lefebvre and E. Eisemann, "GigaVoxels: ray-guided streaming for effcient and detailed voxel rendering," in

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D), 2009.

[38] A. Lindenmayer, "Mathematical models for cellular interaction in development," Journal of Theoretical Biology, vol. 18, pp. 280-315,

1968.

[39] J. R. W. a. J. C. L. Hsieh, ""A voxel-based, forward projection algorithm for rendering surface and volumetric data", Visualization'92,

pp.340--348," 1992.

[40] J. Amanatides and A. Woo, "A fast voxel traversal algorithm for raytracing," Eurographics'87, pp. 3-9, 1987.

[41] M. Mittring, ""Advanced Real-Time Rendering", 3D Graphics and Games Course, Chapter 8, pp.113-115, SIGGRAPH 2007," 2007.

[42] T. A. a. S. L. a. T. Karras, "Understanding the Efficiency of Ray Traversal on GPUs -- Kepler and Fermi Addendum," NVIDIA

Technical Report, no. NVR-2012-02, 2012.

[43] C. Crassin, "GigaVoxels:A Voxel-Based Rendering Pipeline For Efficient Exploration Of Large And Detailed Scenes," p. 207, 2011.

[44] P. S. R. SEDERBERG T. W., "Free-form deformation of solid geometric models. j-COMP-GRAPHICS 20, 4, 151–160.," 1986.

[45] F. E. SINGH K., "Wires: a geometric deformation technique. In SIGGRAPH ’98 (1998), pp. 405–414.," 1998.

[46] O. J. Forstmann S., "Fast skeletal animation by skinned arc-spline based deformation. In Eurographics Short-Papers (2006), pp. 1–4.,"

pp. 1-4, 2006.

[47] S. A. Z. J. J. YANG X., "Curve skeleton skinning for human and creature characters: Research articles. Comput. Animat. Virtual

Worlds 17, 3/4 (2006), 281–292.," 2006.

[48] S. D. M. P. CORNEA N., "Curveskeleton applications. In Visualization, 2005. VIS 05. IEEE (2005), pp. 95–102.," 2005.

[49] K. M.-S. YOON S.-H., "Sweep-based freeform deformations. Computer Graphics Forum (Eurographics’06 proc.) 25, 3 (2006), 487–

496.," 2006.

166 Bibliography

[50] Y. S.-H. C. J.-W. S. J.-K. K. M.-S. J. B. Hyun D.-E., "Sweep-based human deformation. The Visual Computer 21, 8-10 (2005), 542–

550.," 2005.

[51] M. G. M. K. L. Botsch M., "Primo: Coupled prisms for intuitive surface modeling. In Eurographics Symposium in Geometry

Processing (2006), pp. 11–20.," 2006.

[52] J. D. W. J. B. L. S. A. C. M.-P. Decaudin P., "Virtual garments: A fully geometric approach for clothing design. Computer Graphics

Forum (EG’06 proc.) 25, 3, 625–634.," 2006.

[53] G. S. C. B. D. T. P. Z. Capell S., "Interactive skeleton-driven dynamic deformations. In SIGGRAPH ’02: ACM SIGGRAPH 2002

Papers, pp. 586–593.," 2002.

[54] J. D. S. A. POPA T., "Materialaware mesh deformations. In SMI ’06: Proceedings of the IEEE International Conference on Shape

Modeling and Applications 2006 (SMI’06), p. 22.," 2006.

[55] H. J. S. J. L. X. B. H. G. B. S. H.-Y. ZHOU K., "Large mesh deformation using the volumetric graph laplacian. In SIGGRAPH ’05:

ACM SIGGRAPH 2005 Papers, pp. 496–503.," 2005.

[56] P. J. SUMNER R. W., "Deformation transfer for triangle meshes. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 399–405.,"

2004.

[57] C. M. F. N. LEWIS J. P., "Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In

SIGGRAPH ’00, pp. 165–172.," 2000.

[58] N. U. TAEHYUN RHEE J. L., "Realtimeweighted pose-space deformation on the gpu. Computer Graphics Forum (Eurographics’06

proc.) 25, 3 (2006), 439–448.," 2006.

[59] C. F. R. I. C. F. SLOAN P.-P. J., "Shape by example. In SI3D ’01: Proceedings of the 2001 symposium on Interactive 3D graphics, pp.

135–143.," 2001 .

[60] M.-T. VOLINO P., "Fast geometrical wrinkles on animated surfaces. In 7th International Conference in Central Europe on Computer

Graphics and Visualization (1999), pp. 55–66.," 1999.

[61] J. A. T. K. Jing F., "Modeling wrinkles on smooth surfaces for footwear design. Computer-Aided Design 37, 8, 815–823," 2005.

[62] C. M.-P. Larboulette C., "Real-time dynamic wrinkles. In CGI ’04: Proceedings of the Computer Graphics International (CGI’04), pp.

522–525.," 2004.

[63] . T. Scheuermann, "Render to vertex buffer with d3d9.," in Siggraph 2006 Course 3: GPU Shading and Rendering, 2006.

[64] J. Ewins, "MIP-map level selection for texture mapping," IEEE Transactions on Visualization and Computer Graphics, vol. 4, no. 4,

pp. 317-329, 1998.

Bibliography 167

Publication List

[Journals and Transactions]

Sven Forstmann and Jun Ohya, “Efficient, High-Quality, GPU-Based Visualization of Voxelized

Surface Data with Fine and Complicated Structures”, IEICE Transactions on Information and

Systems, Vol.E93-D, No.11, pp.3088-3099, (Nov. 2010). (Related to Chapter 4)

Sven Forstmann and Jun Ohya, “Visualizing Large Procedural Volumetric Terrains Using Nest

Clip-Boxes”, GITS/GITI 紀要 2010 – 2011（早稲田大学国際情報通信研究科／国際情報通

信研究センター），査読付き論文, pp.51-61, (2011.10). (Related to Chapter 3)

[International Conferences (Reviewed)]

Sven Forstmann, Yutaka Kanou, Jun Ohya, Sven Thuering and Alfred Schmitt, "Real-Time

Stereo by using Dynamic Programming", 2004 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Workshop: Real Time 3D Sensors and Their Use, CD-ROM

Proceedings (8 pages), June 27 - July 2, 2004.

Sven Forstmann and Jun Ohya, "Visualization of large Iso-Surfaces based on nested Clip-Boxes"，

SIGGRAPH2005 Posters, Conference Select CD-ROM Disc 2, 1 page, 2005.7-8.

(Related to Chapter 3)

Sven Forstmann, Jun Ohya, Waseda University, "Fast Skeletal Animation by skinned Arc-Spline

based Deformation", Eurogaphics 2006 , pp.1-4, (Sep. 2006) (Related to Chapter 5)

Sven Forstmann, Jun Ohya, Artus Krohn-Grimberghe, Ryan McDougall, "Deformation Styles for

Spline-based Skeletal Animation", SCA '07: Proceedings of the 2007 ACM

SIGGRAPH/Eurographics Symposium on Computer animation, pp.141-150, Aug. 2007.

(Related to Chapter 5)

[Presentations at Domestic Academic Meetings (Non-Reviewed)]

Sven Forstmann, Alfred Schmitt, Sven Thuering, Jun Ohya, Yutaka Kanou, "Realtime Stereo

Vision", PRMU2003.

168 Bibliography

Sven Forstmann and Jun Ohya, "Interactive Visualization of Large ISO-Surfaces", 国際情報通信

研究公開研究発表会予稿集、pp.8-9, 2005.10. (Related to Chapter 3)

Sven Forstmann, 大谷 淳, "Interactive Visualization of Large ISO-Surfaces", FIT2005（第４回情

報科学技術フォーラム）, pp.365-366, (2005.9). (Related to Chapter 3)

Sven Forstmann and Jun Ohya, "Visualization of Large Caved Terrains"， 電子情報通信学会技

術研究報告, Vol. 105, No. 608, ITS2005-64, pp.101-106, (2006.2). (Related to Chapter 3)

Sven Forstmann and Jun Ohya, "Procedural Spline-Skeletons for Organic Structures and Adaptive

Architecture", 2007 年電子情報通信学会総合大会，A-16-23，p.336, (Mar. 2007). (Related to

Chapter 5)

Sven Forstmann, Jun Ohya, "Skeletal Animation by Spline aligned Deformation on the GPU", 電

子情報通信学会技術報告, Vol. 106, No. 608, IE2006-283, pp.47-52, (Mar. 2007). (Related to

Chapter 5)

Sven Forstmann, Jun Ohya, "Visualizing run-length-encoded volume data on modern GPUs",

IE2007-317 PRMU2007-301, pp.355-358. (Related to Chapter 4)

Sven Forstmann, Jun Ohya, "Parallel Forward Projection of Large Voxel-Volumes on the GPU",

IEICE Tech. Rep., CS2008-41, pp. 11-16, Dec. 2008. (Related to Chapter 4)

[Co-authored Publications]

Igor Goncharenko, Mikhail Svinin, Sven Forstmann, Yutaka Kanou, and Shigeyuki Hosoe, "On

the Influence of Arm Inertia and Configuration on Motion Planning of Reaching Movements in

Haptic Environments", Proc. of World Haptics 2007: The Second Joint Eurohaptics Conference

and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp.33-

38, Mar. (2007), Tsukuba, Japan

Li Jen Chen, Jun Ohya, Shunichi Yonemura, Sven Forstmann, Yukio Tokunaga: Prompter "."

Based Creating Thinking Support Communication System That Allows Hand-Drawing. HCI (2)

2009: 783-790

