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Chapter 1. Introduction

1.1

Background

Since the invention of computers in the 1940’s by Konrad Zuse (Z3, 1941 and Z4, 1945), John
Presper Eckert and John William Mauchly (ENIAC, 1946)', data acquisition, data processing, and

data visualization have been elementary tasks in computer science.

The history in computer graphics (CG) has begun only shortly after the invention of the computer
in the 1950’s. Already at that time, General Motors started to research and develop the previously
mentioned computer aided design system® for virtual car design. At that time, graphics had
represented entirely by vector graphics on cathode ray tubes (CRT), rather than pixel graphics.

Graphics at that time only consisted of dots and lines.

The next milestone in the development of CG was the visualization of avatars in the 1960°s. The
main elements of today’s 3D graphics such as raster-graphics, ray-tracing, texture mapping, bump

mapping, reflection mapping, and the depth-buffer were finally developed in the 1970’s.

In the 1980’s, the visualization quality was further improved, and methods such as 3D graphics
related technologies and global illumination were invented. As 3D graphics technologies grew,
CG started being used for many applications such as such as scientific and/or engineering,
medicine, art, education and entertainment. The 1980’s were also the years when CG became
important for the entertainment business. CG appeared in Hollywood movies such as Star Trek

and Tron® as well as in 3D video games such as Cube Quest*.

As the video game market is growing, the segment of the game industry also keeps evolving.
Already in 2008, the video games industry had grown larger than the movie industry’. Nowadays,
the development of a top video-game, a so called triple A (AAA) title, cannot anymore be carried
out by a few people in a garage. Large studios are mandatory, and production costs of up to 100
million US Dollars ® and more’ have to be taken into account. In the video game market, Japan
plays a particularly significant role as its market share is, with a revenue of over 7 Billion USD as
of 2008, the world’s second largest.

! United States Army. ENIAC Electronic Numerical Integrator And Computer. 1946.
? General Motors, IBM. DAC-1 Design Augmented by Computer. 1960.
? Lisberger, Steven. Tron. Walt Disney Productions, 1982.

* Simutrek Inc. Cube Quest. 1983.

* TomsGuide. Video Games Outsell Movies http://www.tomsguide.com/us/Games-DVD-Blu-ray-Economy,news-3364.html. 2012.

® DigitalBattle. Top 10 most expensive video games budgets ever.
http://www.digitalbattle.com/2010/02/20/top-10-most-expensive-video-games-budgets-ever. 2010.

" GameBandits. Star Wars — The Old Republic.
http://www.gamebandits.com/news/pc/star-wars-the-old-republic-new-voidstar-trailer-released-20393/. 2012.

8 Analysis: Trends in the Japanese Game Market. http://www.gamasutra.com/php-bin/news_index.php?story=20461. 2008.
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In the 1980’s, first video games were developed independently, without using any third-party
software. The reason for that was that most games were developed for arcade machines, which
had unique hardware. The program code was very platform-dependent; i.e., written for one
platform, thereby it could not be reused on another. On home computers of the time, such as the
Commodore 64, Amiga 500 and Atari ST, third-party game engines were not yet common. Games
at that time did not require complex algorithms and had much less lines of code, which made the
development easier. Therefore, source code was rarely re-used. Examples of re-use of code were
sequels to a game, but in that case they re-used the entire game, not an abstract part such as a

game engine.

With the evolution of Intel x-86 architecture and the beginning of 3D graphics in the early 1990’s,
a significant increase in the complexity of game development happened. At that time, the first
game engines for 3D games, such as the Doom engine’ and the Build engine' appeared. Both
engines used software rendering and provided simple 3D support. Items and characters in the
game were represented by billboards. The camera’s motion was limited as well, and not able to be
translated and rotated with six degrees of freedom. For the level design in Doom, room over room
was impossible. Due to several of those limitations, both engines were often referred to as 2.5D

game engines, rather than real 3D game engines.

Later in the late 1990’s, real 3D engines that could handle arbitrary geometry configurations
appeared, such as the Quake engine'' and the Unreal engine.'” They did not have 2.5D engines’
limitations and for the first time provided support for 3D hardware acceleration. The characters
were full 3D models, rather than 2D billboards.

Successors of the Quake engine were named ID tech. Newer ID tech as well as the Unreal
Engines support more graphical features, realistic physics and better artificial intelligence (Al) for

enemies and Al multiplayer characters (bots).

While the ID tech game engines were dominant among games in the 1990’s, the Unreal engines
became more popular, starting in the year 2000. The first and second most popular game genres

using third party game engines were first person shooters and role playing games, respectively.

More important things for game engines in recent history include not only the feature support, but
also the support for game consoles, PCs and mobile devices together. In particular, the share of

mobile devices increases as they become faster and further have better 3D hardware acceleration.

Due to the continuing increase in complexity, more and more modules of modern game engines
are developed by third parties as individual products (middleware). It is not common anymore

that the entire game engine is developed only by one single company. A few examples of third

° ID software. Doom Engine. 1993.

1% Silverman, Ken. Build Engine. 3D Realms: 1997.

' ID Software. Quake Engine. 1996. http://www.idsoftware.com/games/quake/quake.
2 EPIC MEGAGAMES. Unreal Game Engine. http://www.unrealengine.com/.
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party software are Speed-tree”’, Havok'®, Fork Particle'’, the Simul Weather SDK'® and the City

Engine'’.

The term “Game Engine” is defined as a software framework that includes all modules required
for producing a video game. One of the modules of game engines is the so called “3D engine” in

case of a 3D game and ‘2D engine” in case of a 2D game, respectively.

Different from the term “Game Engine”, “3D engine” is not strictly defined. In history, often

entire game engines have also been entitled as “3D engine”, even if they are very complex.

Recent 3D engines can accommodate multiple applications and can take care of consistencies
between the multiple applications such as the view-point and view-angle synchronization so that

the visualized CG images generated by the multiple applications are properly combined.

In case of state of the art 3D engines, such as the Nebula 3D engine'®, as shown in Fig. 1.1,

objects to be visualized are categorized as follows.

e Terrain

e Static objects

e Skeletal animated objects
¢ Plants

¢ Sky and clouds

For each of these objects, an application is embedded into the Nebula 3D engine so that these

objects are consistently combined in 3D very efficiently.

" SpeedTree. SpeedTree. http://www.speedtree.com/.

'Y Havok. Havok Physics. 2000. http://www.havok.com.

'* Fork Particle. Fork Particle. http://www.forkparticle.com.

' Simul Software Ltd. Simul Weather SDK. 2009. http://www.simul.co.uk/
' ERSL. City Engine. 2008. http://www.esri.com/software/cityengine/.

'8 RadonLabs. Nebula Device. http:/sourceforge.net/projects/nebuladevice/.
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Figure 1.1 3D Engine: Example of a screenshot of DrakenSang, a game by BigPoint/RadonLabs based

on the Nebula Device game engine. Screenshot by courtesy of Bernd Beyreuther, head of game-production
at BigPoint/RadonLabslg.

For a modern video game, the entire process until a game ends up in the stores has become quite
complex and is split up into the following steps:

¢ Game Development
o Game Design (game type, storyline, character design, level design)
o Software development (Research and Development, game engine, tools, web portal)
o Graphics (modeling, animating, motion capture, painting textures & backgrounds, web)
o Audio (music composing, sound effects, narration)
e Beta testing phase
e Marketing (TV commercials, internet adverts, getting reviewed by magazines)

¢ Shipping (via BlueRay, DVD, internet and distributors)

' BigPoint. BigPoint. 2002. http://www.bigpoint.com.
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This thesis, focuses on the research part of the software, in particular the 3D graphics algorithms
to be accommodated into the 3D engine. More specifically, this thesis addresses how to improve
methods for visualizing terrain, static objects and skeletal animated objects, which are elements

common to video game contents.

Related Work

This section reviews the related work to the three topics described in Section 0 as well as an

overview of general CG methods related to 3D engines.

Overview

In CG, many methods have been developed over time. Basic and quite old methods of CG have
been overviewed in Chapter 0. Newer methods relevant to 3D engines are reviewed in this section.
In 3D engines it is important to visualize complex geometries with accurate shading at high
frame-rates. Concerning shading in real-time, particularly shadows are challenging. Conventional
ray tracing based methods have not been suitable in game engines for a long time, as they are too
slow. Therefore, faster techniques such as shadow mapping [1] and shadow volumes [2] have

been used. They can avoid ray tracing and suit well for triangle based visualizations.

Another methods important for 3D engines include techniques that improve conventional bump-
mapping in order to let flat surfaces appear bumpy. Here, parallax occlusion mapping [3], which
was first published in 2004, is an evolution that creates much more realistic bumps than previous
bump-mapping. Rather than just altering the normal vector, parallax occlusion mapping creates a
parallax effect, which lets the bumps on a planar surface appear in 3D. Furthermore, it provides

self-shadows and correct silhouettes in object borders on the screen.

Recent methods related to animation evolve existing methods to realistic and physically correct
skin deformations, proper cloth simulation [4], or hair animation and visualization. Another work
in the area of animation focuses on creating realistic character locomotion animations
procedurally. In the area of visualization, splat [5] and voxel-based [6] representations are
researched as an alternative to visualizing geometries by triangles. For achieving faster
visualizations, level of detail (LOD) was researched, where methods such as HLOD [7] and Far
Voxels [8] were proposed to visualize large and complex scenes. To achieve proper lighting
without using pre-computations, global illumination in real time was developed by Crassin et al
[9]. The computation of global illumination is already complex, even for state of the art ray-

tracing methods; therefore, achieving real-time performance is a challenge.

Terrain

In the scene, terrain is a ground surface on which characters, buildings or other static objects can
be placed. It is one of the most crucial parts of a video game and virtual 3D worlds in general. The

research of terrain visualization for CG applications mainly started in 1996 with height-map based
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terrains using continuous level of detail [10] and roaming [11]. Over time, as computers evolved,
and as hardware acceleration appeared, methods were changed. Nowadays, research focuses not
only on improving height map based methods, but also volume data based methods to allow
terrain features such as overhangs, caves and arches. One of the most successful movies,

9920

“Avatar””, might be the best example for impressive volumetric landscapes, where a fantasy

world called Pandora, with large floating rocks is one of the main elements in that movie.

In video games, height-map based methods were commonly used for rendering terrain [11] [12].
While height-map based approaches were largely sufficient for featuring isometric perspective
games such as real-time tactics, first person games” demand more interesting landscapes,
including concavities and overhangs. Therefore, recently height-maps were step-by-step replaced
by volumetric terrains such as Pandromeda®, [13], [14] so that the above mentioned interesting

terrain landscapes can be generated.

The creation of these complicated, and thus interesting, volumetric terrains necessary for long-
range walk-through environments can either be achieved by manual operations™, or procedural
methods [13], [14]. Manual creation by content creators is expensive in terms of time and

financial cost and thus should be reduced as much as possible.

Procedural methods save time for creators; however, they produce huge amounts of data, which
needs to be stored and loaded again at run-time. To solve this issue, procedural methods need to
be integrated into the video game for generating contents at run-time. Furthermore, video game
players tend to get bored if the same contents are presented each play repeatedly. To avoid
repetitions of the same contents, procedural methods should be able to create new and interesting

contents in each play.

So far, none of the existing methods that can visualize volumetric terrains is able to display run-
time generated procedural terrain. Overcoming this limitation is an important step in the
development though. All existing methods to visualize volumetric terrains require a time
consuming pre-processing step in order to convert the terrain data into a format that is optimal for
the particular method. Therefore, they need to store the temporary generated data on mass-storage
devices. The visualization of procedural volumetric terrain data that is generated on run-time is

still an open area of research that has not been solved yet.
The limitations of existing terrain technologies are briefly summarized as follows:

e Pre-calculation: Existing methods that are able to visualize large volumetric terrains in
real-time require a time consuming pre-processing prior to the visualization. The pre-
processing is required to compute level-of-detail representations of the original high
resolution terrain data. Each method uses its own individual level of detail format.

e Limited terrain size: As existing methods need to apply the pre-processing to the entire

% Cameron, James. Avatar the movie. Twentieth Century Fox Film Corporation, 2009.

2! First person games are video games where the player sees the scene in ego-perspective. It is equal to seeing through the eyes of the
virtual main character.

2 Pandromeda. http://www.pandromeda.com. 2012.
% 3D-Coat. http://3d-coat.com/. 2012.
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terrain data, the terrain size is limited by the memory capacity provided by the hardware.
Infinite sized terrains cannot be handled by existing methods.

e Absence in synthetic volumetric terrain generation on the fly: Existing methods do not
achieve both, an automatic volumetric terrain generation and the visualization
simultaneously. There are methods that are able to generate terrain procedurally, and there
are different methods that allow existing data to be visualized in real-time. However,
presently no method exists that allows the dynamic, on-the-fly generation of volumetric

terrain data, in parallel to the visualization.

Static Objects

Traditionally, static objects are visualized using polygon based rendering, which has been more
efficient than point-primitive (splatting) or voxel-based rendering (voxel comes from Volume-
Pixel) over a long period. However, polygonal models are becoming more and more detailed,
leading to dense meshes where each polygon merely covers a few pixels on the screen. Once
polygonal meshes become so dense, results of rendering by using polygons, point primitives, or
voxels do not show significant differences in quality and rendering speed. This means that voxel
and point-based rendering methods gain more importance. The reason for this is that as the
rasterized size of voxels, splats and polygons become similar, rendering a voxel or splat employs

considerably less computation than rendering a polygon.

Previously, an advantage of polygon-based rendering was the ability to save memory by using
repeated textures. Voxel- and splat-based rendering inherently use unique texturing, so there is no
benefit in memory consumption from using repetitive texturing. However, according to a recent
trend to use unique non-repeating textures for each object on the screen (Megatexture
technology®*), the memory consumption for polygon-based rendering sharply increases. Therefore,
if this trend continues, the memory consumption of voxel and splat-based rendering becomes

comparable with unique textured polygon rendering.

Voxels are basically three dimensional pixels. Voxels are most commonly used in connection
with volume data. Each voxel represents one atom of a volume data set. First, voxels were mostly
used in visualizing medical scans (such as CT or MRI). Over time, they also found their
application in video games. An early game based on voxels is called Commanche®. They used
voxels to visualize the terrain. At that time, polygon rendering was not hardware accelerated and

therefore quite slow. Voxel graphics provided more details at the same rendering speed.

The founder of one of the most famous game companies, John Carmack, already forecasted the
come-back of voxels in 2008°°. He explained a technique called sparse voxel octree raycasting
[15] where sparse means that only surface data is stored as voxels — no solid data. On the CPU,

several methods for ray-casting voxel and volume data have already been developed. However,

 Carmack, John. The Megatexture technology. 2006.
http://www.team5150.com/~andrew/carmack/johnc_interview_2006_MegaTexture_QandA.html.
> NovaLogic. Comanche series. 1992. http:/en.wikipedia.org/wiki/Comanche_series.

 Carmack, John. Id Tech 6, Ray Tracing, Consoles, Physics and more. http://www.pcper.com/article.php?aid=532.
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since the graphic cards became general purpose computation units that can execute common C—

code, a next challenge is voxel ray-casting on the GPU.

Level of detail (LOD) [16] technologies for polygons and voxels and are compared. LOD is
important to accelerate rendering and to decrease the run-time memory consumption. For
polygonal objects, LOD is usually handled as follows. First, a set of polygonal objects with
different levels of detail is created by an artist. Then, at run-time, the proper LOD of the object is
selected according to the view distance from the view-point. Voxels can handle LOD more
efficiently than polygons, because voxel data can be easily down-sampled for representations in
lower details. Therefore, it is not necessary for the artist to design separate models of the same
object for each level of detail because the different levels of detail can be generated automatically.
Another advantage of voxels over polygons is that Boolean operations (consisting of union,
intersection and difference operations) can be applied much easier to voxels than to polygons.
With polygons, complex algorithms are required, and taking care of exceptional cases is needed.
With voxels, the Boolean operation is simply performed per voxel, which is much simpler as it is
very similar to a Boolean value; the voxel is either set or unset, like a Boolean value which is
either O or 1. Despite all these advantages of voxels over polygons, it should be noted that
deformations and skeletal animations in real-time still pose a challenge for voxel-based

representations.

Point- and voxel-based rendering are very similar. However, the major difference between voxel-
based rendering and point-based rendering is that voxels occupy a well-defined cubic portion of
volume in space, while point-based methods usually approximate the geometry by 2D splats, such
as in QSplat [5]. Due to the fact that splats are 2D approximations of a 3D object, point-based
algorithms need many special processes (such an adaptive sampling) to be robust and efficient.
Voxel-based algorithms are generally more robust without the need for such exceptions, because a

voxel covers a well-defined cubic portion of space in 3D, rather than a 2D approximation.

In the past, voxel-based methods optimized for sparse surface data used to be applied to the CPU.
After the invention of the GPU and NVIDIA CUDA?Y, it is possible for the first time to execute
such complex algorithms on the GPU in a parallel fashion. The GPU provides hundreds of single
instruction multiple data (SIMD) units, which allow co-execute algorithms in a highly parallel
manner. So far, the use of the GPU has been very limited, though; e.g. C-like programs using
pointers cannot be executed. This was improved by the development of NVIDIA CUDA. Their

API allows, for the first time, to use the GPU as a real general purpose processor.

However, developing efficient ray-casting methods using the GPU is more than a simple
implementation task. Additional research is required to optimize the performance for the novel
parallel architecture. Furthermore, since the data of large detailed voxel objects consumes a
significant amount of memory, which requires further research on efficient data structures and
memory compression methods [17]. Another issue of existing voxel visualizations is the aliasing
for close geometry. So far, the blocky appearance of voxels close to the camera has not yet been

efficiently solved.

#" NVIDIA. Compute Unified Device Architecture (CUDA). 2008.
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The limitations of existing methods are summarized as follows:

¢ Conventional triangle based rasterization as well as splatting based methods do not scale
well for complex scenes in terms of memory consumption and rendering speed due to
overdraw”. The speed for rasterization is linear, which is not as good as raycasting
methods which provide logarithmic scaling.

e Existing voxel-based raycasting methods are not memory efficient due to their data
structures.

e Triangle based ray-casting methods significantly consume larger memory than other

methods, such as splatting.

Therefore, it can be said, that at present no method can provide low memory consumption and

high computation speed simultaneously.

Skeletal Animation

Animation has been important in CG and visualization ever since. In 1961, the first computer
animation by Edward Zajak named Two-Gyro Gravity-Gradient Attitude Control System® was
presented, shortly after the history of CG began. Over time, various methods have been developed
to animate virtual characters, where skeletal animations™ of characters that consist of polygons
are most important. To animate them in a smooth manner, the mesh vertices need to be
interpolated between key-frames. Soon after this was first done in a simple manner, advanced
skeletal methods were developed. They allowed the animations to be created in a hierarchically

structured manner, such that not every vertex needs to be animated manually.

In the meantime, skeletal character animation has become one of the major components in most
digital productions, including cinematic productions and interactive applications such as video
games. A challenge in particular is the skin deformation, which is a major component in character

animation.

To animate the deformation, many approaches have been developed over time; e.g. free-form-
deformation (FFD) based techniques over skeletal methods and advanced algorithms, which also
take into account topology of a mesh, physical constraints, and even authentic data from laser-

scans.

 In complex scenes, many objects occlude each other. Since all objects need to be drawn for rasterization, some regions of the screen
are drawn over multiple times. This occurrence is defined as overdraw.

¥ Bell Labs. A Two Gyro Gravity Gradient Altitude Control System. 1961.
http://en.wikipedia.org/wiki/History_of computer_animation.

* Skeletal Animation: The definition of skeletal animation derives from the hierarchic bone structure used in computer graphics,
which is similar or equal to a skeleton. In case that representing an existing skeleton of a real biologic life form is focused, the
term “skeletal” is replaced by “skeleton”.
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In recent years, the so-called linear blend or matrix skinning [18], also known as skeletal subspace
deformation (SSD), has widely been used for skeletal animation. SSD is the most popular method
among all authoring tools and interactive applications. The key of SSD's success is that it is

simple and well-balanced in terms of quality, speed, and complexity.

On the other hand, SSD is still not perfect, because its deformations expose the well-known
candy-wrapper effect for twisting operations and collapsing geometry while bending. This issue is
very annoying for artists and has inspired many researchers to propose new solutions and
alternative methods. Unfortunately, most of these methods turn out to be not practical, because
these are too complex or demanding to accomplish real-time execution. This is critical for real-
time applications such as video games, which require fast computations. Also in rendering
systems for cinematic productions that do not require real-time, computation speed is an
important and non-negligible factor, because time-consuming computations raise the production

cost of a movie.

To solve the above-mentioned issues of SSD, the following two quaternion based skinning
methods were developed by Ladislav Kavan: Spherical blend skinning (SBS) [19] and Dual
Quaternion Skinning (DQS) [20]. They change the interpolation scheme from matrices to
quaternions or even dual quaternions. This change cannot prevent deformation artifacts
completely, but it successfully avoids effects as collapsing geometry for large bend angles.
Furthermore, they preserve a high computational speed, which is not as high as SSD, though. In
case of quaternion skinning, about 78% of the speed of SSD is achieved, and in case of DQS,
72% the speed of SSD is achieved ( [19], [20]). However, for creating complex deformations of a
spine or facial animation for instance, many joints are required. At present, existing skinned
skeletal animation methods suited for use in real-time applications do not provide an efficient way

to simplify this.

Another important issue to be solved for an animation system's success is the ability for adjusting
the degree of freedom of deformation. In this sense, pose-space-deformation (PSD) has made an
important advancement that allows artists to design each pose of an animation individually. PSD,
which is an animation system that is mounted on top of the basic skeletal animation system, uses
the output of the basic skeletal animation system and modifies the output by a post-process.
However, PSD has a significant restriction: if an artist enhances a certain pose — for example by
modeling a joints muscle- or cloth-like deformation behavior — it is not possible to reuse this

particular behavior for any other joint. It needs to be modeled for each character individually.

Existing limitations are summarized as follows:

e  Matrix skinning is fast, but exposes deformation artifacts for large bend angles in joints.

e Quaternion Skinning and Dual Quaternion Skinning have smaller artifacts than SSD, but
they are not as fast.

e Existing skeletal animation methods suitable for 3D engines require many control joints

for creating a spine or complex facial animations. They do not provide an efficient way to
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simplify this task.
e Custom deformations such as muscle behaviors or cloth wrinkles need to be modeled for
each character individually using PSD. Existing methods do not allow re-use of existing

custom deformations for different joints or characters.

Purpose

As shown in Fig. 1.2, this thesis assumes that the three visualization modules: terrain, static

objects and skeletal animation are embedded into a 3D engine.
The purpose of this thesis is to improve the three main visualization modules.

The specific goals of the three modules are described as follows.

Procedural

Polygon
Data

Polygon
Data

Volume Volume Animation
Data Heigh Data Data
eightmap l Procedural l
Data Data
A
s - s s .
Terrain Static Objects Skeletal Animation ‘
Chapter 3 Chapter 4 Chapter 5
ClipBox Terrain RLE Voxel Raycasting Spline based Animation
(GITS Bulletin Paper) (IEICE Journal Paper) (EG Intl. Conf. Short Paper)
Deformation Styles
(SCA Intl. Conf. Paper)
\_ $ \. $ \. $ y,
3D Engine

Figure 1.2 Overview: This diagram shows the three main modules and their data connections. The

numbers indicate the chapter in this thesis.

Terrain

The goals for overcoming the limitations described in Section 1.2.2 are as follows. First, the pre-
computation-free visualization of volumetric terrain data should be achieved, because all existing

methods require a pre-computation step prior to the visualization. Second, infinite sized terrain
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should be achieved, because existing algorithms can visualize only limited sized terrain as they
need to pre-process the entire terrain data. Last, new procedural terrain data should dynamically
be generated on the fly in parallel to the visualization, to allow the visualization infinite sized

terrains, where this is impossible for the conventional methods.

Static Objects

The goals for improving existing methods for visualizing static 3D models with complicated
structures are as follows. Complex voxel scenes should be visualized faster than conventional
splatting methods and conventional triangle based rasterization. The memory consumption should
be lower than the scene’s equivalent triangle mesh, and lower than related voxel based raycasting

methods.

Therefore, highest rendering speed, and lowest memory consumption for visualizing detailed

voxel scenes should be achieved.

Skeletal Animated Objects

The goals for improving existing skeletal animation methods are as follows.

1.3.3.1 Skeletal Animation

Collapsing geometries caused by large bend angles of articulated objects, which could be
observed in matrix skinning (SSD), should be prevented. Faster computation, artifact-free
deformations and more parameters to adjust the deformation compared to quaternion skinning
(QS) and dual QS (DQS) should be achieved. The number of joints for complex skeletons should

be reduced, where fast rendering speed is preserved, and the artifacts are prevented.

1.3.3.2 Pose Dependent Customization

1.4

1.4.1

Different from the previously mentioned pose-space-deformation, two kinds of ‘“re-usability”,
which is impossible for existing methods, should be achieved: simple and abstract design of
deformation styles for re-usable deformation behaviors such as muscles bulges or cloth wrinkles,

and applicability to any number of target characters instantly.

Approach

Terrain

A nested Clip-Box approach is proposed to achieve the goals described in Section 1.3.1 as follows.
Clip-Boxes allow distant terrain geometry to be visualized with low detail, while geometry close
to the view-point is visualized with high detail. A Clip-Box consists of a cubic regular grid of
voxels and its corresponding triangulation. For the visualization, multiple nested Clip-Boxes are

centered about the viewer. To preserve the placement about the viewer over time, their position,
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their voxel data and their triangulation are updated frequently according to the viewer’s position

changes, concurrently to the visualization.

Since only a small and well-defined region of the entire terrain data around the viewer is required
for the visualization, the entire terrain size can be arbitrary size. It is, therefore, possible to
visualize infinite sized procedural terrains. The procedural method does not need to compute the
entire terrain data. Computing the terrain data within the Clip-Boxes, which surround the viewer,
is sufficient. Namely, nested Clip-Boxes allow infinite sized terrains, because the terrain size is
independent of the small, constant amount of terrain data contained by the Clip-Boxes that is
required for the visualization. Finally, nested Clip-Boxes allow the visualization of arbitrary sized
procedural volumetric terrain data, as the procedural data can be computed concurrent to the
visualization for the required Clip-Boxes, along with the required Clip-Box updates, where
“Procedural” here means “computed by evaluating numerical functions”. Therefore, variations of

the terrain can further be computed instantly.

Concurrent updates along with the visualization are achieved with a two threaded approach: one
thread creates the geometry (geometry thread) and the other thread renders the scene on the screen
(visualization thread). The geometry thread repeatedly updates the geometry of all clip-boxes. It
therefore loops over all Clip-Boxes and serially creates the procedural voxel terrain data, converts
the voxel data into triangles, and smoothes the triangle data. The visualization thread repeatedly

loops over all Clip-Boxes and visualizes the latest triangle data of each.

Nested Clip-Boxes are pre-computation free, because their volumetric terrain data is converted

into polygons immediately concurrent to the visualization.

Static Objects

This thesis proposes a parallel voxel based raycasting approach for visualizing run-length-
encoded (RLE) voxel data sets. The proposed method achieves the visualization by raycasting the
scene in vertical planes that are perpendicular to the ground plane. For each plane, only one ray is
casted into the RLE structure, where the result of each vertical plane is stored in a temporary 2D
image buffer as single column. The temporary buffer is then mapped to the screen for achieving
the final visualization. In addition to only casting one ray per column on the screen, efficient
visibility culling by an extended floating horizon algorithm together with early ray termination are

the main properties to provide a high speed.

Due to visibility culling and early ray termination it is possible to visualize voxel scenes faster

than by using triangle based rasterization or basic splatting.

Due to RLE data compression, lower memory consumptions per element than triangle based
rasterization, triangle based raycasting and related methods for voxel based raycasting methods

are achieved.

The final rendered result is post-processed by a novel image filter that smoothes edges of large
voxels close to the camera. The filter computes smooth and precise opaque edge-preserved results

based on the data in the depth buffer and achieves a higher rendering quality than existing voxel
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based raycasting methods. The accurate visualization per-pixel due to raycasting provides more
precise results than conventional splatting. Splats are only an approximation of the space they

occupy, while voxels are well defined cubes.

Skeletal Animation

This thesis proposes a spline skinning based approach combined with deformation style.

1.4.3.1 Spline Skinning

The proposed spline skinning is a combination of spline aligned deformations and conventional
SSD. While SSD uses vertex weights to blend simple matrices, spline skinning uses them to blend
multiple splines curves. The deformation for a certain point of the spline is achieved by using the

spline’s Frenet frame.

As spline aligned deformations do not expose artifacts common to SSD, QS and DQS,
deformation artifacts are avoided by spline skinning, where SSD is the most common method for

animation in current 3D engines.

Furthermore, splines can help to simplify complex skeletal animations, such as a spine or facial

animations, by replacing multiple common joints by one spline.

In addition, computations per vertex can almost be reduced to those of SSD by storing a fixed
number of samples per spline-curve in a temporary buffer prior to the main deformation per
vertex on a per frame basis. This buffer containing the spline samples is then used for computing
the deformation. Spline skinning can therefore be computed significantly faster than QS and DQS,

which is used in modern 3D engines, such as the CryEngine3 and Unreal Engine 4.

1.4.3.2 Deformation Styles

1.5

To achieve re-usable deformation styles, pose-dependent scaling is applied per spline as post
process to the spline skinning method. To achieve flexible scaling, deformations are defined in an
abstract manner by three scale textures and three scale curves. Once defined, these deformation
styles allow the creation of muscles and other custom deformations that can be applied to any
number of characters simultaneously, because the deformation style is defined independent from
the geometry. Even self-intersections can be prevented by proper modeling of the scale functions,
because the scale functions can adjust the bulging of the deformed geometry depending on the

bend angle.

Organization
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This thesis is organized as follows, where Chapters 3 to 5 are illustrated in Fig. 1.2, together with

their publications.

Chapter 2 explains 3D engines and game engines. A brief history of 3D engines and game engines,
reviews of existing engines, and explanations of their components as well as a comparison of their

features are described.

Chapter 3 proposes large scale polygon-based volumetric terrain generation and visualization.
After a survey of related work, and the the proposed method are stated, the experimental results

are presented together with discussions.

Chapter 4 proposes a visualization of static objects by using high resolution voxel volumes. After
a survey of related work and the proposed method are stated, the experimental results are

presented with discussions.

Chapter 5 proposes skeletal animation and deformation styles. After a review of related work and
the proposed combined method are stated, the achieved experimental results are presented with

discussions.

Chapter 6 concludes this thesis. In addition, future work is described.
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Chapter 2. 3D Engine

2.1

History

In history, the first 3D engines were used to operate with simple wire-frame models, such as the
one used in the game Flight Simulator FS1 in 1980°'. At that time, 3D engine was not a common
term yet. The next development was the visualization of filled polygons, as in the game Rescue on

Fractalus®.

The first 3D engines that supported perspective correct texture mapping > in software at
interactive frame-rates were the 3D engines of Descent™* and the ID Techl engine®. ID Tech 1

was used for the game Quake.

Then, with the introduction of 3D hardware acceleration in the years 1996-1998 by mostly 3DFX
voodoo graphics cards, both technologies were supported for the first time, where popular engines
were the Unreal 1 engine’® and the ID Tech 1 & 2 engine. Hardware based rendering is obviously
faster, but since most users at that time did not have an additional hardware accelerator card,
software based rendering was still supported for compatibility reasons. Novel features at that time
were transparent water layers, reflections on the floor, shadows, lens flare effects maps, and

spherical volumetric fog byUnreal Engine.

The following generation, in the years 1998-1999, step by step abandoned software rasterization,
and only hardware accelerated rendering remained. At that time, the novelties of the ID Tech 3*

engine were tessellated nurbs surfaces as well as environment-mapped materials.

A major step towards having large game-worlds was video-game Elder Scrolls III Morrowind*
based on the Gamebryo Engine® in the year 2002. It was one of the first games that provided

large 3D outdoor game environments.

The following generation of engines, such as the CryEngine 1* in 2004, was able for the first time
to visualize large outdoor height-map-based terrains populated with thousands of plants. First, it

was used in the videogame FarCry*'. Additional features included shadow mapping [1], high

*! SubLogic Corporation. subLOGIC Flight Simulator. 1980.
%2 LucasFilm Games. Rescue on Fractalus. 1984.

* Perspective correct texture mapping: Unlike affine texture mapping which is fast to compute but shows discontinuities, perspective
correct texture mapping does not expose discontinuities, but is slower to compute.

* Parallax Software and Interplay. Descent. 1994. http://www.interplay.com/

5 ID Software. ID Tech 1. 1993.

* EPIC MEGAGAMES. Unreal Game Engine. http://www.unrealengine.com/.

71D Software. ID Tech 3. 1993.

38 Ubisoft. The Elder Scrolls III: Morrowind. Bethesda Game Studios, 2002. http://morrowind.de.ubi.com/.
¥ Gamebase USA & Gamebase Co., Ltd. Gamebryo Engine. 1997. http://www.gamebryo.com/

* CryTek. CryENGINE 1. 2006. http://www.crytek.com/cryengine/cryengine 1/overview

4 CryTek. FarCry. 2004. http://www.crytek.com/games/far-cry/overview
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quality water rendering, bump mapping and efficient use of level of detail. The ID Tech 4
engine that appeared in the same year for the first time used shadow volumes [2]. Shadow

volumes provide a better quality but are more complex and use more memory bandwidth.

Remarkable features of the CryEngine 2* in the following generation in 2007, were volumetric
voxel-based terrains, screen-space ambient occlusion [21], parallax occlusion mapping [3], light
beams and light shafts, motion blur, depth of field, high dynamic range lighting, subsurface

scattering and ambient illumination based on real time ambient maps similar to [22] .

In 2009, CryEngine 3* was released. Its new features include approximate global illumination
using light propagation volumes, irradiance volumes to give color to reflected light, particles that
can receive shadows, hardware tessellation, local approximated ray traced reflections, deferred
lighting and 3D water. Another novel technology, called mega-texturing [23], was introduced by
the ID Tech 5 engine [23].

The feature of the latest engines presented in 2012, such as the Unreal 4 Engine®’, is voxel cone

tracing for pre-computation free global illumination [9].

3D engine in Game Engine

2.2.1 Game Engine

2.2.1.1 Overview

The software system of a game, which sits on top of the 3D engine, is called a game engine,
which includes a 2D, 2.5D or 3D engine. A game engine consists of multiple components, which

are overviewed in Fig. 2.1. The main purposes of a game engine are as follows:

e Re-usability: A game engine allows speeding up the development of a game significantly.
It provides the major functionality required for most of the games. Therefore, the
development cost can be minimized.

e Portability: Often, game engines support multiple platforms, such as PC, consoles and
mobile devices. Therefore, by using a game engine, the developed game becomes

available on multiple platforms at the same time.

The core components are game logic, graphics engine, mass storage access ((I/O), sound,

graphical user interface (GUI) and collision detection.

“ID Software. ID Tech 4. 1993.

# CryTek. CryENGINE 2. 2007. http://www.crytek.com/cryengine/cryengine2/overview
* CryTek. CryENGINE 3. 2009. http://www.crytek.com/cryengine/cryengine3/overview
4 EPIC MEGAGAMES. Unreal Game Engine. http://www.unrealengine.com/
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Figure 2.1 Overview of Game Engine and 3D Engine: black triangle: modules explored by this

thesis.

Additional components are resource management, physics, network, scripting, scene graph,

artificial intelligence (Al), streaming, procedural content creation and a movie player.

2.2.1.2 Core components

Graphics Engine

This part is responsible to visualize the game graphics. It is the main focus of this thesis.

In-Out (1/0)

The I/O component is required to allow the data access to mass storage devices such as the hard-
disk or DVD ROM as well as LAN and WAN.

Sound

Sound is required for sound effects, background music and narration.

Game Logic
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Game logic is responsible for connecting and managing the other game modules, which means

controlling the components and exchanging the information between them.

Graphical User Interface (GUI)

The GUI is required for all types of in-game menus.

Collision Detection

Collision detection is required for the interaction between players, the environment and non-

player characters (NPCs).

3D Engine Structure and Functions

A 3D engine solves the visualization task of a game or game engine. A 3D engine uses 3D
geometry data as input and visualizes the scene according to changes in the view-point and global
camera parameters in real-time. The parameters are given by the game engine and usually depend

on user input.
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Figure 2.2 General 3D engine Overview: This diagram shows the render flow of a common 3D engine
including additional post processing modules in a simplified manner. The black triangle marks modules

correspond to this thesis’ chapters 3 to 5.

A simplified visualization flow of a typical 3D engine is shown in Fig. 2.2. Multiple passes are
required to achieve the final result. The final result is hereby the color buffer, which is displayed
on the screen. The attached Z-buffer or depth-buffer is used to handle occlusions of opaque

surfaces.

The rendering passes are categorized into three general passes: background pass, main pass and
post-processing passes. Terrain, static geometry and animated geometry are included in sub-
passes of the main pass. Each pass corresponds to one module. As identical camera parameters
are used for each pass, all modules share the same view-point, same view angle and camera

orientation, same focal length, same field of view and the same rendering resolution.

The function of each pass is described in the following.
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Background Pass

The background pass sets the background and initializes the depth-buffer. The types of
backgrounds range from single colored backgrounds over using sky-boxes*® up to simulations of
the atmosphere including day/night cycles, cloud rendering, light scattering and weather
conditions. An example for complex background rendering is the third-party software True Sky*’.
Such complex backgrounds that include volumetric lighting effects are also involved in the post-

processing pass.

Main Pass

The main pass visualizes the entire 3D foreground geometry. This thesis’ main pass consists of
three sub-passes: terrain, static objects and animated objects. The result of each sub-pass is

merged with the content of the color buffer and depth buffer.

Post-Processing Pass

The post-processing pass is responsible for mostly shading and camera effects. Options of the

post-processing pass are listed as follows (Fig. 2.2):

e Deferred lighting

®  Motion blur

e Depth of Field (DoF)

e Light shafts [24]

¢ High Dynamic Range lighting (HDR)
e Screen Space Ambient Occlusions (SSAO)
e Shadows

e Reflections

e Refractions

¢  Fluid effects

e Particle effects

e Fog/Mist/ Haze

e Semi-transparent surfaces

“ Valve Software. SkyBox. https://developer.valvesoftware.com/wiki/Skybox_(2D).
47 Simul Software Ltd. Simul Weather SDK. 2009. http://www.simul.co.uk/
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Visualization by 3D Engine

Items to be visualized

Modern 3D engines split the visualization task into the following general types of objects for the

visualization.

e Terrain (Chapter 3)

e Static objects (Chapter 4)

e Skeletal animated objects (Chapter 5)

¢ Plants (included in Chapter 4)

e Sky and clouds (not included in this thesis)
e  GUI (not included in this thesis)

¢ Combining the modules

These object types are detailed as follows.

Terrain

The terrain provides the foundation of the virtual world. All virtual characters and buildings are
placed on the terrain. Terrain has a unique geometry which is different from characters and
buildings. Terrain geometry is of lower resolution; it is more uniform and changes more smoothly
in space. Therefore terrain rendering algorithms are different from algorithms focusing on
rendering general 3D objects. Terrain is commonly visualized using height-map based methods.
However, also mixed methods using height-map data and volume data exist, such as the one used

in the CryEngine. This thesis aims at achieving the goals described in Section 1.3.1.

Static objects

Static objects include all kinds of static architecture such as buildings, bridges, stones and rocks.
They are usually rendered as static textured polygon meshes. To increase the performance, distant
objects are often rendered with a reduced amount of polygon count, which is called level of detail
(LOD).

However, with the increasing size of game-worlds such as in GTA V* in which entire cities
including cars and characters are visualized, the amount of static objects is enormous. Therefore,

the detail of each object needs to be reduced dramatically.

Skeletal animated objects

* RockStar Games. GTA V. 2008. http://www.rockstargames.com.
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Skeletal animation is used mostly for animating skeleton based models, such as humans. However,
skeletal animation can be used for any complex animation and deformation of organic models in
general. It is a core component of every video game and therefore 3D engine. A common
middleware for rendering characters has not yet been established. However, it is often coupled
with the physics engine such as Havok for simulating realistic and physically correct animation

behaviors.
Plants

Plants include trees, grass and flowers. They are highly detailed and often animated by simple
swaying motion. While trunks and branches are commonly visualized by solid polygonal objects,
leaves are rendered as two-sided polygons without volume. As most 3D engines have the same
needs for plants and vegetation, a middleware called SpeedTree has evolved in recent years.
SpeedTree is commonly used by newer 3D engines such as previously mentioned Nebula 3D
engine. To make trees more realistic, recent developments use multiple tricks to add realism as
described in GPU Gems [24].

This thesis does not focus on visualizing plants in particular, but plants without motion are
included in static objects.
Sky and clouds

Sky and cloud rendering is not researched in this thesis. Both are often rendered using a simple
skybox*, which is basically a textured cube on which distant mountains, sun and clouds can be
painted. Newer technologies simulate day and night cycles, weather as well as volumetric clouds

and light scattering through the clouds. An example is the middleware TrueSky.
GUI

The GUI is used for game menus, but has not yet been standardized. Most games have a custom

menu interface.

Combining multiple modules

3D engines combine each module’s output in any data format (e.g. polygon, voxel) so as to obtain

the final rendering result by utilizing well known depth buffer technology.

4 Software, Valve. SkyBox. https://developer.valvesoftware.com/wiki/Skybox_(2D).
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Figure 2.3 Main render passes of general 3D engines: upper row: terrain, middle row: static objects, lower

row: characters; left column: color buffer, right column: depth buffer (bright: close, dark: far).

The way it works is illustrated in Fig. 2.3. The depth buffer stores the depth information for each
pixel in the rendered image. It is, therefore, possible to merge the render results of multiple
modules by applying per pixel visibility checks using the depth buffer. This technology allows to
merge the results from different modules efficiently. The culling is automatically carried out by
the graphics hardware when drawing triangles. This technology is supported by the first 3DFX
Voodoo graphics hardware accelerator cards.

For visualizing each component shown in Fig. 2.3, the same camera parameters are used to
achieve a consistent result of the depth-map. The three modules (terrain, static objects and
characters) store the depth value sequentially to the depth buffer, one after another, so that the
result of merging the terrain, static objects and characters are rendered properly in the color buffer
(right column in Fig. 2.3) without using advanced synchronization technology.
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2.5 Module Comparison

2.5.1 General Comparison

In Fig. 2.4 the differences between the proposed modules and corresponding modules in
conventional engines are illustrated. The major modules for each engine, the proposed and the
conventional ones, are completely different from each other as follows:

e While conventional terrain is height-map-based, the proposed is volume-based and
automatically generated.

®  While conventional static objects are visualized using triangles, this thesis proposes voxel
based raycasting.

e  While conventional skeletal animation is based on matrix skinning this thesis proposes a

spline skinning and deformation styles.

Table 2.1 shows a more thorough comparison to all of the previously introduced state-of-the-art
engines. As shown in the table, the proposed modules provide novel features not present in
existing engines that can solve the limitations of the major 3D engines. Each of the modules is
detailed in the following subsections.

Skeletal Animation: Matrix Skinning

/

Skeletal Animation: Spline Skinning

/

A
Static Objects : Triangles

7
Static Objects : Voxels

Terrain: Automatic, Volume based

Terrain: Manual,Height-map based

Conventional 3D Engine This thesis

Figure 2.4 Illustrated Comparison
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Table 2.1 Module comparison: In the table, “+” indicates that the feature is available and “-* indicates

that the feature is unavailable. For unknown support the fields are left empty.

Year |Terrain Static Geometry
Runtime-
generated |Infinite
Procedural |Sized
Heightmap |Volume [Volume Volumetric  |Triangle Raycasting |Voxel based
Terrain Terrain |Terrain Terrain rasterization |based Ray-casting
Proposed modules + + + + + + +
CryEngine3 2009 |+ + - - + - -
Unity3D 2012 |+ - - - + - -
Infinity Ward4 2009 |+ - - - + - -
ID Tech5 2010(+ - - + - -
Avalanche Engine |2010[+ - - - + - -
Frosthite2 2011+ - - + - -
Unreal4 2012+ - - + - -
Anvil Next 2012 |+ - - + - -
Unigine 2012 |+ + - - + - -
Blender 2012|- - - - + - -
Ogre 2012 |+ - - - + - -

Year |Skeletal Animation

Matrix Spline Deformation

Skinning DQAS Skinning Styles
Proposed modules + - + +
CryEngine3 2009 |+ + - -
Unity3D 2012[+ - - -
Infinity Ward4 2009 [+ - -
ID Tech5 2010|+ - -
Avalanche Engine |2010|+ - -
Frostbite2 2011+ - -
Unreal4 2012+ + - -
Anvil Next 2012+ - -
Unigine 2012 |+ + - -
Blender 2012 [+ - -
Ogre 20121+ - -

Terrain Comparison

Existing engines use manually generated height map or volume terrain. From the 3D engines
investigated in Table 2.1, CryEngine 3 provides the most advanced terrain technology, which
combines voxel based terrain representations with height map based representations. While height

maps solve for common terrain, voxels are used for overhangs, caves and arcs.

The terrain in existing engines is often streamed from a mass storage device or from network.
This limits the size of the terrain and, as a consequence, the size of the virtual environment, which

is based on the local storage device and the time artists spent for its creation.

In the proposed terrain module, the terrain is entirely volume based and created automatically on

run-time according to the user-defined parameters. This means that caved terrains with overhangs



253

2.54

Chapter 2 3D Engine 43

and arches can be generated at large size without much effort. Furthermore, modifying parameters
allows design variations to be applied easily for generating new and interesting terrains. The size
of the terrain that can be generated is only limited by the numerical precision, not by the size of

the storage device.

Static Objects Comparison

Existing 3D engines use triangles to represent static geometry, as can be seen by the comparison
in Table 2.1. Important to display many objects with triangles is the use of level-of-detail. Here,
CryEngine 3 is the most advanced engine so far. It is able to display a large amount of objects by

rendering distant objects with a fewer triangles than objects close to the camera.

Triangle based rasterization works well to a certain degree. However, once the number of objects
increases significantly, ray casting could outperform rasterization, because raycasting can handle
occlusions very well, while conventional rasterization could lead to heavy overdraw. More

precisely, the complexity of rasterization is linear to the number of rendered triangles T: O( T ).

The proposed method by this thesis is based on voxel raycasting. Voxel based raycasting scales
logarithmic to the number of voxels V in the scene for raycasting: O( Log (V) ). Another
significant issue is the fact that voxel-based objects can store high, evenly distributed details more
compactly compared to polygon-based objects. The reason is that voxels combine position and
material information. Triangle-based rasterization uses textures, which are addressed with texture
coordinates for each triangle. Furthermore, vertex coordinates need to be stored along with the

triangles as well, which both gets significant for detailed geometry.

Skeletal Animation Comparison

Conventional 3D engines used matrix skinning for performing the skeletal animation. Matrix
skinning is fast and simple — however - it exhibits significant deformation artifacts for strong
bending operations. To overcome these limitations, dual quaternion skinning is used by the latest

3D engines, such as CryEngine 3 (Table 2.1).

Compared to matrix skinning, also the proposed spline skinning algorithm can solve the
deformation limitation, as spline based deformations are free from artifacts. While the dual
quaternion skinning can solve for collapsing geometry in strongly bent regions, it does not
provide as many deformation parameters and same speed as spline skinning. Depending on the
purpose, one spline can cover multiple common joints at once and therefore simplify the skeleton

significantly.

In addition to spline skinning, a deformation styles method is proposed. It allows to model
abstract deformation styles like muscle, metal, or cloth-like deformations. These abstract designs
can be applied immediately to all characters at once. The deformation styles method can be

attached to the spline skinning method as a post-process.



2.6

44 Chapter 2 3D Engine

Conclusion

The proposed three modules for procedural volumetric terrain rendering, rendering of large
complex static objects and for skinned skeletal animation with deformation styles can solve
existing limitations and provide additional features. As a result of different comparisons, it turns
out that the CryEngine3 is the most advanced game engine at this point.This thesis assumes that
the CryEngine 3 is the 3D engine, in which the three modules explored in Chapter 3 to Chapter 5
are embedded.
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Chapter 3. Terrain

3.1

3.2

3.2.1

Goals

This chapter proposes a visualization algorithm that can overcome the limitations of existing

methods. The goals are summarized as follows.

e Unlimited Terrain Size: The proposed method should be able to handle arbitrary terrain

sizes, without the need to store any data on mass media devices.

e Pre-computation Free: Different from existing methods, pre-computations of the entire

terrain data should not be required, as this would not allow unlimited sized terrains. In
addition, the terrain data and geometry should immediately be generated.

e Generation of Procedural Volumetric Terrain Data on the Fly: The proposed method

should allow the generation of terrain data on the fly. The data should not be stored on
mass storage devices etc. The data should be synthesized on run-time, in parallel to the
visualization. This saves time for the artist and allows quick changes between multiple

terrains.

Related Work

Procedural Terrain Generation

In games, procedural terrain generation has already been used. An example of this is the
successful video game “The Elder Scrolls II: Daggerfall”, by Bethesda Software. A massive sized
terrain (a flat map, no height information) was one of the main elements of this game. They did
not use procedural volumetric terrain for their approach; that is why this is only partially related

work.

In academia, procedural terrains can be found as well. Prusinkiewicz developed a method for
creating fractal height-map based terrains [25]. More advanced method was developed by
Peytavie et al [14]. They proposed an algorithm to automatically generate large volumetric
terrains with caves and overhangs. Their first one did not solve for volumetric terrains. Their
second method uses volume data for creating the terrain, but their method does not generate the
terrain in parallel to the visualization, and it does not visualize the terrain in real-time. Therefore,

it cannot achieve the visualization of large volumetric terrains in real-time.
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In other areas, non-game and non-academic, procedural terrain generation was developed as well.
Terragen® allows the generation of arbitrary height-map based terrains. In Pandromeda’', height-
map based terrains as well as volumetric terrains can be generated. In both Terragen and
Pandromeda a user can freely choose a terrain function. Both methods focus on rendering the

terrain offline. They cannot visualize volumetric terrain in real-time.

A method that generates a volumetric terrain for the visualization in real-time is the NVidia
Cascades Demo [13], whose terrain function is fixed to Perlin Noise’*. They create the terrain in a
pre-processing step. They cannot generate procedural terrains in parallel to the visualization.

Therefore, they cannot visualize terrains that require more memory than physically available.

Summary: All related methods create the terrain as an offline process, even though they support
terrain visualization in real-time as in [13]. However, at present there is no algorithm that can
achieve the dynamic, on-the-fly generation of procedural volume data in parallel to the

visualization process.

Polygonal Visualization of Volumetric Terrains

Since the proposed algorithm visualizes the terrain volume data as polygonal mesh, methods that
visualize large and detailed objects which consist of either polygonal mesh data or opaque volume

data are also reviewed.

One published algorithm > represents the terrain by a 512 X512 X 64 voxel grid and visualizes by
using multi-resolution ray casting. They focus only on visualizing height-map based terrain and
do not show any examples for volume based terrains. Furthermore, they pre-process the entire
terrain data and store it in a special format prior to the visualization. They do not support updates

on run-time. Therefore, they cannot visualize arbitrary sized volumetric terrains in real-time.

Another related method is the visualization of large iso-surfaces from volume data. An iso surface
represents the boundary surface inside a volume data between values less than the iso value and
the ones greater than the iso value. Commonly, the iso value is a user defined constant. Gregorski
et al [26] present a method that recursively subdivides the scene into diamonds based on pre-
calculated error-values to visualize large iso surfaces. The method is basically a three-dimensional
extension of the height-map based terrain rendering method that is known as ROAM [11]; that
method converts the input data into a special format in a pre-processing step. Their method

requires intensive pre-computation and therefore cannot solve for updates in real-time.

For visualizing large meshes, several methods have been invented. Most of them, such as [7] and
[27], cluster the input mesh in multi-resolution shapes, such as cuboids or tetrahedrons. These
have to be created in a pre-computation step for the dynamic assembly at run-time. The approach

presented by Lindstrom [28] is similar. His method clusters vertices in a hierarchical fashion to

%0 Fairclough, Matt. Terragen. 2000. http://www.terradreams.de.

5! Pandromeda. http://www.pandromeda.com. 2012.

>2 Perlin, Ken. Perlin Noise http://en.wikipedia.org/wiki/Perlin_noise. 2012.

%3 Visualization Lab, Center for Visual Computing, SUNY Stony Brook. Voxel-Based Flight Simulation
http://www.cs.sunysb.edu/~vislab/projects/flight/. 1997.



3.3

Chapter 3 Terrain 47

achieve the view-dependent LOD. His method requires intensive pre-computation and therefore

cannot solve for updates in real-time.

Other related approaches propose the usage of point sprites, also known as splats, for representing
the scene [8], [5]. In [8], a combination of splats and polygons is used, where the polygons solve
the geometry near the viewpoint, and splats are used for distant geometry. Their method requires

intensive pre-computation and therefore cannot solve for updates in real-time.

A method that utilizes an LOD structure, which is similar to the proposed method, is called GoLD
[29], where the mesh resolution is continuously reduced according to distance by switching
among several pre-computed detail levels of the initial mesh. The LOD’s are computed by vertex
removal in order to enable a smooth transition by geo-morphing. Their method requires intensive

pre-computation and does not support dynamic generated terrain data.

Video games such as the CryEngine 3 do not reveal their method used for visualizing volumetric
terrains. However, a known limitation of their method is that it does not allow the entire large
terrain to be represented as voxel landscape. They use local, manually designed voxel boxes to
visualize overhangs and caves. The height map based terrain is marked out in those areas for

avoiding interferences.

As for the related work in general, including CryEngine 3 and the methods [5] [7] [8] [27] [28]
[29], none of them suits for visualizing large, on-the-fly generated volumetric terrain data. All of
the aforementioned approaches require intensive preprocessing of the full data set prior to
visualization, and they also have to store the complete terrain data to be visualized. Besides the
large amount of resources necessary during preprocessing of polygon or volume data as in [8] to
create the run-time structure, it is clear that the amount of data generated obviates the application

of large walk-through ranges.

Proposed Method

To solve the limitations of existing algorithms a method based on nested Clip-Boxes is proposed.
Nested Clip-Boxes are an evolution of nested geometry clip-maps, which are used for height-map
based terrains. Rather than nesting 2D geometry maps, multiple 3D Clip-Boxes are nested in a
concentric manner about the viewer. To preserve the concentric nesting while the viewer moves,
frequent Clip-Box updates are performed in parallel to the visualization. A Clip-Box consists of a
cubic regular grid of voxels and the corresponding triangulation. For performing a Clip-Box
update, the following two general steps are performed. First, the procedural terrain volume data
for this particular Clip-Box is computed. Second, the volume data is converted into polygons for
the visualization. No pre-computed data is required for these two steps. The proposed Clip-Box
based terrain visualization can, therefore, achieve the pre-computation free visualization of

volumetric terrain data.

Furthermore, only the data present in the Clip-Boxes is required for the visualization; the size of
the entire terrain data is independent of the constant amount of data required for the visualization.

The proposed method can, therefore, achieve the visualization of arbitrary sized terrains. This
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overcomes the limitation of related methods to visualize terrains that do not fit into the available

physical memory.

Nested Clip-Boxes furthermore provide the ability to generate procedural volume data in parallel

to the visualization. This allows the visualization of synthetic terrains of arbitrary size.

Similar to the proposed approach, other researchers also use functions to generate the terrain (cf.
Pandromeda, [25] and [13]).

The proposed method only requires the terrain functions and their parameters for generating the
underlying volumetric data. Storing the entire volumetric data generated from these functions is
not necessary. Since any arbitrarily explicit function can be chosen for data generation, the walk-
through range and the number of levels are limited only by the parametric range of the function.
Due to the possible large range of variations, there is a rich number of distinct concavities,
overhangs, and other interesting structures that can be generated in run-time. Note, that as
procedural creation of volumetric terrains is already addressed by various methods such as,
Pandromeda, [25], [13], [14], the main focus of this chapter is on generating the visualized terrain
on-the-fly, without relying on any pre-processed data. Different from the proposed method the
above mentioned related works, Pandromeda, [25], [13], [14] are not able to create and update the

terrain data in parallel to the real time visualization.

Overview

The proposed landscape visualization method consists of terrain synthesis and visualization
modules. The synthesis module defines the terrain as three dimensional function defined by the
user. The user can adjust the parameters for the terrain generation and for controlling the
appearance. The visualization system consists of two threads that run in parallel, as shown in Fig.
3.1: A geometry thread and a visualization thread. The geometry thread calculates the procedural
terrain and converts it into triangles for the visualization. The computed data is stored in a buffer
that can be accessed by the visualization thread later on. Mutual exclusion is achieved by using
double buffering (two buffers) for each Clip-Box. The visualization thread then visualizes the data

in real-time as triangle mesh.



Chapter 3 Terrain 49

Geometry Thread Visualization Thread
L , & v
oop over ClipBoxes <€ Read
r—> Loop over ClipBoxes €

v
I Loop over Triangles |<—

Create from
outer CB ?

No Yes
Triangle
Create CE.' data frgm inside inner
* Terrain Function Create from polygon 5
*  Volume Data subdivision CB?

Yes No

* Height-Map Data

Convert volume data
to polygon data

I Visualize Triangle I

Mesh smoothing

I Smoothing I I Synthetic details I
v ¥ Set
I Update Clip-Box Data I
1 Yes No
I Set Sync Flag I
Swap Buffers

I Wait Sync Flag Clear I\L Clear Flag

T I Clear L7

| Update View-point

N Clip-Box Data ( Double Buffered Process Keyboard &

Write Voxel Volume Data and Triangle Mesh Data Mouse Input

Figure 3.1 Overview of the terrain visualization module: Using two threads helps to optimally distribute

the rendering and voxel to polygon conversion tasks on modern multi-core-CPUs.

For the visualization module, the CB volume data is created from sampling the procedural terrain
function for each voxel inside the CB. For the hardware accelerated visualization on the GPU, the
volume data is converted into triangle data. The conversion from volume data to triangles is very
similar to visualizing iso-surfaces and can be solved by using one of the conventional algorithms
such as marching cubes [30]. However, as the amount of triangles arising from direct volume data
to polygon conversion is immense, an efficient level-of-detail (LOD) approach needs to be
employed to the proposed system. This is necessary to keep the polygon-count reasonably low for

today’s graphics hardware.

Nested geometry clip-maps, which derive from clip-maps [31], provide all of required features for
the two-dimensional height-map based case. However, they cannot solve the three-dimensional

volume-data based case.
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Figure 3.2 Evolution from Clip-Map to Clip-Box (CB); Top left: Nested geometry clip-maps [12] Top
right: the Clip-Box based approach as sketch; lower: and the final result as a wire-frame.

Hence, extending the clip-map based terrain visualization approach of Lossaso et.al [12] on
geometry clip-maps to the third dimension by introducing nested Clip-Boxes, as shown in Fig. 3.2,
can solve existing limitations. Clip-Boxes have very similar properties to clip-maps, but are more
complex. Figure 3.3 shows an example of a single Clip-Box (CB). The voxels inside the CB are
computed using a terrain function fre..;,. In contrast to clip-maps, where nested regular grids
suffice to represent the geometry (Fig. 3.2), CB’s carry complex, rapidly changing mesh-
topologies. While each geometry clip-map is represented as a rectangular portion of the
landscape’s height-map, each Clip-Box represents the iso-surface of a cubic portion of the terrain
volume data.
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Voxel [x,y,z] = frerain (X,Y,Z)

Figure 3.3 Clip-Box: Left: the pure Clip-Box geometry; right: CB embedded into the landscape.

The proposed algorithm visualizes the terrain using a two-threaded approach, which is shown as a
diagram in Fig. 3.1. The Geometry Thread with a low update rate creates the geometry from
procedural volume data (‘“Procedural Data”), existing volume data (“Volume Data”) or height-
map data, which is converted into volume data (“Clip-Box Data”). Next, the volume data is
converted it into polygons (“Convert volume data to polygon data”). For the procedural creation,
a user defined mathematical terrain function is evaluated for each voxel of the volume data in
x,¥,Z. The result is either O (voxel not set) or 1 (voxel set). To smooth the created geometry, a
smoothing step is finally applied (“smoothing”). After the geometry creation is completed, the
created geometry is stored to the one buffer of the Clip Box data that is currently not used for
visualization. To communicate with the “Visualization Thread”, a “Sync Flag” is set. The
visualization thread checks this flag for each frame to be visualized and updates its reference to
the corresponding buffer. After that, the flag is cleared and the geometry thread can continue to
update the next CB.

The visualization thread continuously displays the polygons on the screen with a high update rate.

For the procedural terrain function, which computes the landscape volume-data to be used by the
nested-Clip-Box algorithm, a relatively simple function that produces landscapes complex enough
to prove the efficiency of the proposed method. Since the formula for the terrain generation can
be defined by the user, this thesis does not focus on inventing a novel formula.

Section 3.5.3 presents some examples of functions, which are used for the experiments.

Differences between the proposed method and Previous Work

The proposed method is basically and extended and improved version of the original version by
Lossaso et.al [12] on geometry clip-maps. The extensions and improvements are summarized as
follows, where the following summary is detailed in Section 3.4:.

¢ Different from clip-maps and geometry clip-maps, the proposed method is based on CB’s.
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CB’s are the three-dimensional extension of geometry clip-maps.

o CB’s are significantly more complex, because the topology of their geometry is
arbitrary. Different from clip-maps, which are based on height-maps, CB’s are
based on volume data.

o In case of geometry clip-maps, only regular girds are required. Clip-maps can
therefore, re-use the entire geometry, while the geometry of Clip-Boxes needs to be
updated according to changes in the view point.

o The proposed method needs to group triangles for efficient rendering and to smooth
the mesh generated from volume data to avoid blocky appearances.

e Different from geometry clip-maps, which apply additional procedural details only as a
height-map, the proposed method applies them along the normal vector of the generated
mesh, which can be any direction.

e Different from geometry clip-maps, which are limited in terms of procedural details for
the global height-map data, the proposed method focuses on generating the entire

volumetric terrain procedurally.

Clip-Box Algorithm

The proposed nested Clip-Box algorithm utilizes a simple and efficient structure to represent the
terrain mesh. Similar to [12], which caches the terrain geometry in a set of nested regular grids,
the proposed method caches the geometry in a set of nested Clip-Boxes (Fig. 3.2). Once the
viewpoint changes, all Clip-Box positions are updated incrementally to preserve the concentric
LOD structure.

The algorithm uses the two threads shown in Fig. 3.1 to handle the Clip Box updates and
visualization. The geometry thread converts the input volume data into polygons for each Clip-
Box. The input data can be generated from procedural terrain volume data, existing volume data
or height-map data, which is converted into volume data. The result is converted into triangle data,
which is smoothed to remove its blockiness. The geometry thread then informs the visualization
thread that new geometry data is available by setting a flag. If the flag is set, the visualization
thread stop its next iteration and update its reference to the new geometry data. The geometry

thread processes all Clip Boxes in a loop.

For the visualization thread, it contains a loop over all Clip-Boxes. The loop processes each Clip
Box and visualizes the contained triangles. The visualization of the triangles is performed in the
inner loop. For each Clip-Box, only triangles that do not lie inside the next inner Clip Box are

visualized to achieve the desired level of detail structure.
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Clip-Box

A Clip-Box (CB) is defined as the polygonal conversion of a cubic portion of the entire terrain’s
volume data. Figure 3.3 clarifies where a single CB is shown in the left image, where the right
image shows the CB embedded into the surrounding landscape. As opposed to clip-maps [12],
which preserve simple regular grids with almost constant complexity over time, CBs significantly

change their complexity as they are shifted through the volume data.

Data Structure

For each CB, 8-bit volume data is stored, where each voxel is either set (opaque) or unset
(transparent). The polygon data created from the volume data consists of triangle strips, where
each vertex inside the strip carries x- y- and z- coordinates as well as a normal vector. For the
conversion, each voxel is considered as a cube with six surfaces and eight shared vertices. Two

triangles form each of the six surfaces of a voxel.

In addition to these two structures, adjacency information for each voxel to speed up the voxel-to-
polygon conversion process is stored. The links (32-bit pointers) that can be seen in Fig. 3.4 are

utilized as follows:

e Voxel to vertex. Required for inserting a new vertex. The link is used to check whether a
vertex has already been created for the specific voxel.

e Vertex to vertex. Required for quick smoothing and to link adjacent voxel’s vertex. Each
vertex has a list of references to at most 6 connected vertices.

e Surface to surface. Required for seeking triangle-strips. Each surface refers to all
neighboring surfaces.

e Surface to vertex. Required to access vertices for rendering each surface.

e Vertex to surface. Required for connecting new surfaces. The reference also helps to add

the surface-to-surface connections instantly.



3.4.3

54 Chapter 3 Terrain

| Polygonized
|
. Voxel

Vertex

AY
e Voxel
A
Adjacent VOl ume
Voxel D a t a

Figure 3.4 Adjacency information between surfaces, vertices and voxels.

Procedural Volume-Data Creation

To generate complex terrains, a basic procedural volumetric method, constructive solid geometry
(CSG) operations, is employed. CSG is applied to the volume data as shown in Fig. 3.5 to achieve
the desired result. In general, multiple simple shape elements are procedurally added and
subtracted from the empty voxel-volume using Boolean operations to create complex landscapes
for testing purposes. The required parameters, size and position of each shape element, are
generated at random within a user-defined range.
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Figure 3.5 Terrain synthesis: based on CSG (constructive solid geometry) and Boolean

operations.

The presented approach is similar to [13], which requires time consuming pre-processing
computations; the only difference is that the proposed method computes on-the-fly only the

terrain portions contained by the ClipBoxes rather than pre-computing the entire terrain.

Volume-Data to Polygon Conversion

Concerning the required basic conversion from volume data to polygons, numerous algorithms
are available (e.g. [30], [32] or [33]). However, as mentioned earlier, since also LOD has to be
employed, these three related algorithms are not directly applicable. In addition, it is necessary to
take care of the following two issues: first, how to remove gaps present in LOD boundaries

efficiently (Fig. 3.6) and second, how to achieve a fast conversion.

Marching cubes [30] and marching tetrahedra [32] achieve a fast and high quality conversion
from volume data to polygons. However, they complicate the welding process for the two LOD

boundaries, and also generating adjacency information between vertices gets more difficult.

This thesis solves the gap problem at LOD boundaries by snapping the outer boundary vertices of
one LOD to the next higher LOD’s inner boundary’s vertices, as depicted in Fig. 3.7. The upper
half of Fig. 3.7 shows the original result, the lower half shows the seamless result. The vertices of
the inner LOD (LOD 0 in Fig. 3.7) are snapped to the next higher LOD’s boundary (LOD 1). The

vertices are snapped to boundary vertices of LOD 1 or to middle points between these vertices.

The fast conversion is achieved by using an efficient pointer structure.
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Figure 3.6 Clip-Box connectivity: A simple method (left) yields an erroneous gap, while the improved
version (right) solves this problem
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Figure 3.7 Seamless connections by improved method.
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Figure 3.8 Voxel to polygon conversion: Surface creation in the 2D case.

Figure 3.9 Geometry-processing: The four images show the proposed steps to process the initial mesh: (1)
direct conversion from volume data (2) smoothed (3) surface subdivision (4) synthetic details.

The volume data used in this thesis is binary: each voxel is either set or unset. A simple sketch is
shown in Fig. 3.8, which demonstrates the voxel-to-polygon conversion for the 2D cases. In case
of 2D, a surface is created. In case of 3D, the z-direction is also checked. If the values of the voxel
and its neighbors in the x (horizontal) or y (vertical) direction are different surfaces are created. In
case of 3D, each voxel is defined as a cube with six quadrilateral surfaces. This allows to connect
the geometry of bounding LOD levels efficiently without seams (Fig. 3.6) by further enabling the
fast creation of adjacency information. The drawback of this approach is obviously a blocky result
of the initial polygonal conversion (Fig. 3.9, image 1). This is solved by geometry smoothing in a
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post-processing step (Fig. 3.9Fig. 3.8, image 2). To weld two LOD levels, the conversion
algorithm processes all voxels present in the boundary between two nested CB’s as previously

explained.

Nesting

Nesting is required by the proposed algorithm to achieve LOD, which helps to reduce the number
of triangles to be renewed. The LOD and nesting are shown in Fig. 3.2. The scale factor for the
Clip-Boxes increases exponentially by the power of two, while the number of voxels contained by
each Clip-Box remains constant. For example, the size of the innermost CB (CB-1)is 100 X
100 x 100 voxels, the size of the second innermost CB (CB-2) is 200 X 200 x 200 and so on;
however, the number of voxels contained by each CB is constantly 100°. This means the voxel
size for CB-1 is one, the voxel size for CB-2 is two, four for CB-3 and so forth. This can be seen
in Fig. 3.2. For each CB, all geometry that overlaps with the next inner CB is spared from

rendering.

It is also important that all CBs are connected seamlessly without exhibiting gaps at the border
geometry. Gaps occur if the boundaries of two nested CBs are not well connected, as
demonstrated in Fig. 3.6. Therefore, once the creation of a CB is finished, vertices present in the
border are connected properly with the next outer CB to avoid gaps, which welds both Clip-Boxes
together. The connection can be achieved efficiently by exploiting pointers of the data-structure.
There, each vertex is connected to up to six neighbor vertices, as there might be a neighbor vertex

in +X, -X, +Y, -y, +z and —z direction.
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Moving the View-Point

In the event that the viewpoint is moved (Fig. 3.10), it is important to verify all Clip-Box
positions in order to preserve the concentric LOD structure. In an ideal case, all Clip-Boxes are
permanently centered about the viewpoint, even if the observer starts moving. However, it is
impossible to update all Clip-Boxes fast enough. Therefore, the inner Clip-Boxes is updated more
frequent than the outer ones, as done in [12]. For example in Fig. 3.10 the viewpoint change from
step 1 to 2 only requires the inner CB to be updated. The outer CB remains at its position, if the
viewpoint change is not significantly large. Moving only the inner CB is possible, as the outer CB
accommodates all the geometry enclosed by its volume and can hence fill the gap caused by the
displacement of the inner CB. Another advantage of this approach is that the number of displayed

triangles can by dynamically adjusted by omitting the innermost Clip-Boxes from rendering.

To minimize the amount of procedural volume data to be computed newly in the event of a Clip-
Box-update, the previously computed data is cached and only differential updates (Fig. 3.11) are
performed on the fly, where the updated portions are referred to as newly computed. After the Clip-

Box (CB) is moved, most of the volume data can be reused and only few portions need to be newly
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computed by the procedural terrain generation algorithm. The update only includes volume data, but it
does not include pointers, vertices or quad surfaces. These are all re-computed from scratch after
updating the volume data. Caching of the generated geometry is more complex and left for future

work.

D Newly computed procedural volume data

D Reusable volume data

D Not reusable area

Figure 3.11 Caching volume data

Geometry Post-Processing

After the surfaces are obtained, smoothing by vertex averaging is applied so that very blocky
structures after the initial conversion are significantly suppressed in the mesh. Figure 3.9 shows
the difference between an image without smoothing (image 1) and with smoothing (image 2),

where image 1 is very blocky and image 2 is very smooth.

In the event that a high update rate for inner CB’s near the viewpoint is needed, the proposed
algorithm enables fast creation of Clip-Box geometry from surface subdivision rather than using
the more complex extraction from volume data. For surface subdivision, the existing triangle
mesh of a CB is used, and each triangle is subdivided into two triangles. As shown in Fig. 3.12,
for each vertex, three additional vertices are inserted so that the regular grid structure of the CB
mesh is preserved as much as possible. This is significantly faster than generating volume data
and converting the volume data to triangles. Figure 3.13 shows the result of creating the CBs
from four different LODs, where image 1 shows the original, image 2 shows the innermost CB
created from surface subdivision and additional fractal details by random midpoint displacement,
image 3 shows the two innermost CBs created from surface subdivision and additional fractal

details and image 4 shows the three innermost CBs created from surface subdivision.
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' One
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Vertex

Figure 3.13 Fractal details: Image 1: no fractal details. Image 2: fractal details for the innermost CB.

Image 3: Fractal details for the two innermost CBs. Image 4: Fractal details for the three innermost CBs.
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To make the generated terrain look more interesting, another post-processing is performed.
Synthetic details are generated by random midpoint displacement [25], whose effect can be seen
in Fig. 3.9’s images, images 3 and 4.

To improve the computing speed, a module to group all surfaces into triangle strips is added,
allowing cache-optimal rendering. This is done by a depth-first search, utilizing the surface-to-
surface connectivity information.

In case of creating many CB’s from polygon subdivision rather than volume data, problems near
voxel patterns that are equal to the ones shown in Fig. 3.14, lower left corner often occur, which
results in affecting the smoothed result. In Fig. 3.14, those critical regions are indicated by a white
circle. To solve this issue, a 2 by 2 pixel filter (lower left in the Fig. 3.14), which detects and
suppresses these patterns, is employed where in Fig. 3.14 the dark and white pixels in the filters
represent darker and brighter colors in the synthesized image, respectively. Specifically, the left 2
by 2 pixel pattern shown in Fig. 3.14 is searched and replaced by the right pattern. The result
(upper-right) indicates that most of the problematic patterns present in the upper-left image can be
successfully eliminated.

m"fadu

Figure 3.14 Smoothing errors and their elimination: Upper-left: Original image with smoothing errors,

Upper-right: Result of smoothing; Lower-left: pattern is replaced by lower right pattern.

Experimental Results and Discussion

Implementation

The proposed algorithm was implemented by using C++. For the graphics API, OpenGL was
employed. A two-thread approach is used to separate geometry processing from rendering (Fig.
3.1). This approach maps well to the current generation of multi-core processors, as each thread is
able to occupy one core. It is possible to use the CPU core affinity functions of the operating
system to assign each thread to one specific CPU core. In this implementation, affinity
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management was left to the operating system. The assignment was verified using task manager.
Each thread uses the corresponding CPU core to 100 percent continuously. Load balancing was
not implemented. The task distribution of the two threads is as follows.

Thread one, the Geometry Thread, is in charge of computing the CB’s mesh. This involves
polygon extraction from voxel data, triangle subdivision, mesh smoothing and random midpoint
displacement (Synthetic details).

Thread two, the Rendering Thread, is in charge of rendering all CB meshes correctly by sparing
the triangles of the next smaller CB inside. As it runs in parallel to the first thread, it is necessary
to be aware of the concurrent use of the mesh data. This was solved by implementing a double-
buffer system, where each mesh buffer is assigned to one thread. Then, once a CB update is
completed, the buffers are swapped synchronously.

Immediate Visualization

To demonstrate that the proposed method is pre-computation free, an example terrain consisting
of about 50000 Boolean operations is generated and visualized. The terrain data is evaluated
concurrent to the visualization without using any pre-computation. The result can be seen in Fig.
3.15. The hardware for testing was a dual core Pentium D 3.0 Ghz, equipped with 1GB RAM and
an NVIDIA GeForce 8600 GTS graphics card.

Figure 3.15 Terrain used for Benchmark.
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Figure 3.16 Terrain visualization from height-map (real data) Puget Sound region in WA, USA.

To further demonstrate that the method is pre-computation free and can be used to visualize
height map based terrains, the height-map in Fig. 3.16 is processed. Here, the height-map serves
as source for the CB volume data. It is converted into volume data instantly. The height-map and
the color-texture are publicly available on the U.S. Geological Survey (USGS) servers™. The
major difference between rendering height-maps by volume based methods and conventional
height-map based methods is the vertical resolution. While the vertical resolution of the proposed
volume based method is reduced with each level of detail, height map based methods, such as
geometry clip-maps, have a constant vertical resolution such as 16 bit integer per height-map
pixel.

Unlimited Terrain Size

To show that the proposed method is able to visualize unlimited sized terrains and further has
application beyond gaming, this section shows its capability to serve as serve as a 3D function
grapher to visualize infinite math functions. The proposed method is able to visualize any

function
.fMath: Zs - {01 1}1 (31)

that is, the function input is defined as a three dimensional integer coordinate vector (Euclidian
space), while the output is defined as zero (represented as air in the visualizer) or one (represented
as solid terrain). Results of three generic functions are shown in Fig. 3.17, where images one to
three show this ability.

> United States Geological Survey, "http://www.usgs.gov," 2012.
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Figure 3.17 Function plotting and real data: [1] to [3]: three different mathematical functions; [4]
conventional iso surfaces.

In Fig. 3.17, three Boolean functions are visualized: (1) exclusive-or, (2) saw-tooth and (3) sine
curve. The specific functions, which only return true or false, are represented by Eq.(3.2) below:

fxor(x,v,2) = ((xxoryxorz)mod 1000 < 357),
foaw(x,y,z) = ((x+y+z)mod 1000 < 500), (3.2)
fan(y,z) = (sin(x) + sin(y) + sin(z) < 2) '

As the evaluation and visualization are done immediately, it is further possible to alter the

function parameters on run-time.

In Fig. 3.17, image 4, the applicability to rendering iso-surfaces [34] is demonstrated. A forest
generated from the well-known bonsai tree data set is shown in image (4). The different levels of
smoothing can clearly be seen, while the amount of smoothing applied was linear to the size of
the CB in order to limit the loss of geometric details. The tree that was used was rescaled to a
resolution of 256° and placed in the landscape 25 times. The tree scene as well as the function plot
scene was rendered with a CB resolution of 192 at about 10-15 fps.
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Concurrent execution of generation and visualization

To analyze the speed performance of the concurrent generation and visualization approach, two
benchmarks are conducted using procedurally generated volume data. First, a detailed timing of
the algorithm pipeline is measured in Table 3.1. Second, an evaluation of the continuous timing

behavior of a flight lasting 222 seconds through a landscape is shown in Fig. 3.18.

In the first above-mentioned benchmark, the timings for one CB resolution (128) are measured in
detail and compared the results with different CB resolutions. In the test, 5 (CB no. 3 to 7) out of
the 7 CB’s were created from volume-data, whereas the two smallest CB’s (no.1 and 2) were
created from subdivision and enhanced with random mid-point displacement, which is explained

in section 3.4.7. The equivalent size of the visualized data volume is 2048’ voxels.

Concerning the timing evaluation, Table 3.1 shows that most of the time is spent for the surface
extraction process (voxels to polygons). The procedural volume data generation requires
relatively less time, which is the result of employing the caching scheme, explained in Section
3.4.6. If caching is switched on, about 80% of a CB’s volume data can be reused during a CB
update, which reduces the average time for the procedural computation from 100ms to about 20
ms. The rendering time for each CB (CB-1 to CB-7) at resolution 128 (upper half) shows that
most time is spent for the innermost CB (CB-1, 161ms), while the outer ones require less time
(CB-7, 39.6ms).

In the lower half of Table 3.1, different CB resolutions are compared. The Geometry Thread is
referred to as Thread 1 and to the Visualization Thread as Thread 2. In Table 3.1, the average
time to update one CB (CB update avg.) can be seen. It is roughly proportional to the number of

processed voxels.

Table 3.1 Performance analysis: In the upper row, update and render times for one CB resolution (128) are

analyzed in detail, while the lower row compares the performance of different CB resolutions.

Procedural generation 0 0 16] 23| 114 116] 42
VVoxels to polygons 0 0| 658 674| 727| B885| 745
Subdivision 29 41 0 0 0 0 0
Smoothing 0 2 96| 137| 152| 174| 178
Fractal details 4 7 0 0 0 0 0
Surface normals 13 16 28| 39 43 41 52
Triangle-strips 4 7 18| 61 52 49| 76
Total (ms) 1 3

Render(ms) 1 1 3 6 6 5 6
Polygons (k) 39.6| 40.2] 90.2| 121] 127] 113] 161

ClipBox Resolution 192 160 128 96 64
CB update avg. (ms) |2671| 1315| 989| 476| 162| Thread 1
Render Total (ms) 68 47 29| 17 8| Thread 2
Polys Total (k) 1657) 1115| 692 352| 134
Memory usage (MB) | 418| 410 265| 151] 108
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In general, the update frequency for a CB resolution of 128 is sufficient for an interactive
exploration at high quality, but it is not well-suited for a fast fly-through. In this case, either lower
resolutions such as 96 or 64 are suited well, or increasing the number of CBs created from
subdivision can also be helpful, as well as the above mentioned opportunity to reduce the number
of CBs. In many cases, an increased number of CBs created from subdivision combined with
random midpoint displacement might even be desirable. It often looks more appealing and natural
than the initial terrain without using subdivision. In Fig. 3.13 this behavior is shown in four steps,

where each step is equivalent to generating one more CB from subdivision.

In the second performance test, the frame-rate continuity of the proposed method is analyzed.
Often, visualization algorithms using LOD have difficulties to provide a continuous frame rate
because for many methods the geometry updates cause short stalls in rendering, which can be
observed as hic-ups in the frame rate. To confirm that the proposed method does not have this
problem, benchmark data over a longer period of time is recorded, while flying through the
artificial terrain shown in Fig. 3.15. The diagram for the record is shown in Fig. 3.18, in which
the performance results in terms of polygon throughput (Mpoly/s), time per frame (ms) and the
polygon count (in thousand triangles) are shown. Even at polygon-counts around 800k, the
triangle throughput remains continuous at about 20 million triangles per second and does not
reveal major peaks. If the rendering time per frame (time/frame) is further regarded, smooth
changes in proportion to the scene’s complexity (Polygons) can be noticed. The proposed
algorithm, therefore, does not reveal any problems that might occur due to the LOD. The frame-
rate ranged from 25 to 130 frames per second, which is sufficient for interactive applications such

as video games.

In order to measure the rendering quality of the visualized landscapes, the landscape of Fig. 3.15
is analyzed at different Clip-Box resolutions, disabling subdivision and texturing. As a reference,
the highest possible resolution that the hardware was able to handle was chosen: a landscape with
7 Clip-Boxes at a resolution of 192. This is equivalent to visualizing a total data volume of 12288
voxels, which would require roughly 210 GB of memory, assuming each voxel is represented by a
single bit. To measure the increased inaccuracy for lower CB resolutions in screen-space, the
renderings of lower Clip-Box resolutions were compared to the reference resolution, as can be
seen in Fig. 3.19. To evaluate the screen-space-error, all images were gray-scaled and each pixel
was marked as erroneous if the difference is more than 20 in a range of 0 to 255, which is

considered to be noticeable, from the reference image (taken at highest resolution).

As shown in Fig. 3.19, the highest CB resolution is compared to with lower resolutions from 64 to
160, where the percentage of erroneous pixels is calculated. The errors range from 3.96% to
20.63%.

The qualitative results show that good quality renderings are achieved if the Clip-Box resolution
is 128 or higher. For lower resolutions, the screen-space error increases significantly and leads to
more inaccuracies, particularly at very distant geometry. Concerning the quality in general, an
asymptotic error behavior is observed, where the error is roughly halved for each increase in the

resolution by 32.
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Figure 3.18 Continuous performance: for a flight in the landscape in Fig. 3.5. Upper: polygon vs time,

middle: time to visualize one frame vs time, bottom: million polygons per second vs time.
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Figure 3.19 Screen-space error: Comparing the highest Clip-Box resolution (192) with lower resolutions:
64 (top-most), 96 ™ top), 128 (third), and 160 (fourth).
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3.5.5 Demonstration

Results of synthesizing terrains by the proposed method are shown in Fig. 3.20, which
demonstrate a variety of terrains can be visualized. The upper-left image shows a terrain that is
additionally enhanced by shaders for the grass and handcrafted items to demonstrate the
applicability for computer games.

Note that arbitrary 3D terrains such as overhangs, which cannot be generated by conventional

height-map based methods, can be generated.

Figure 3.20 Examples of synthesizing terrain.
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Limitations

Since the proposed method is based on volume data, the average memory consumption is higher
than conventional height-map based methods such as geometry clip-maps. In general, 3D requires

more memory than 2D.

Regarding the geometry update of a clip box in case that the view-point is moved, this might be

slightly visible in case of low Clip-Box resolutions.

Conclusion

A nested CB based approach that is able to visualize procedural volumetric terrains with
unlimited size has been proposed. The nested Clip-Box is an evolution of the nested geometry
clip-map, which is used for height-map based terrains. A Clip-Box consists of a cubic regular grid
of voxels and the corresponding triangulation. Nested Clip-Boxes allow the immediate and pre-
computation free visualization of arbitrary sized volume data. Experiments are conducted using
data generated from terrain functions, data from existing volume data sets and height-map data.

Experimental results and discussion are summarized as follows:

®  Pre-computation Free: The immediate and pre-computation free visualization of
volumetric terrain data is achieved. This property is proven by the experimental results,
which demonstrate that a Clip-Box can be computed from mathematical functions within
about one second concurrently to the visualization. This includes the computation of new
terrain data on the fly without pre-computations (e.g. accessing to storage devices), which
all methods [5] [7] [8] [27] [28] [29].

o Unlimited Terrain Size: The proposed method can visualize any arbitrary sized terrain.
This is proven by visualizing volumetric terrain data computed from simple mathematical
functions, which are defined in an infinite coordinate range. The results of this
visualization are demonstrated experimentally.

e Concurrent Generation and Visualization of Generation of Procedural Volumetric Terrain
Data on the Fly: It turns out that as soon as the terrain generation updates its data, the
terrain visualization renders the updated data. The related methods cannot achieve this

because they have not the ability.

Future work for improving the proposed method includes re-using the generated triangle data for
reducing the updating time of the CB triangle data and improving the filter mechanism employed

to remove ambiguous voxel patterns in the CB data.
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Chapter 4. Static Objects

4.1

4.2

Goals

The goal of this chapter is to solve limitations of existing methods for visualizing static objects by

proposing a voxel-based raycasting approach. The goals are summarized as follows:

e Higher computation speed: The proposed approach should be able to visualize better for

complex voxel scenes faster than conventional splatting methods, polygon based
rasterization and voxel based raycasting methods.

e Lower memory consumption: The proposed approach should consume less memory than

related methods for triangle based raycasting

As a summary, the best result of all categories, which are high rendering speeds for complex

scenes and low memory consumption should be achieved.

Related Work

This section focuses only on voxel related works. The methods are split into three groups:
rendering voxel volume data by using Shear-Warp [35], ray tracing based algorithms and point
based rendering. The most widely used methods are briefly overviewed in each group, and their
key issues are mentioned. Shear-Warp renders RLE volume data in a front to back manner to a
temporary texture. The temporary texture is then mapped to the screen. It has been proven to be
very fast for dense, semi-transparent volume data. However, it requires storing three copies of the
volume data in memory, as the data is run-length-encoded for each x-, y-, and z- axis

independently.

Raytracing methods use tree-like structures such as octrees, KD-trees and bounding volume
hierarchies (BVHs) to compress the voxel data and accelerate the raytracing process. An octree-
based raycaster proposed by Knoll et al. [36] uses a pointer-based octree structure so that large
iso-surfaces can be raycast interactively with high quality. The pointer-based octree structure is
advantageous in that spatial queries can be made very efficiently. However, it needs to store at
least one pointer (usually 4 bytes) for each node, which is more than twice as much as the
memory requirement of position data in typical RLE scenes. As a variant of raytracing methods,
Gigavoxels [37] uses bricks of volume data in combination with octrees to store voxels for
interactive raytracing. The method suits well for raycasting of large, semi-transparent volume data.
Its features include filtering for high quality and streaming on demand from the hard-drive to the
GPU or CPU for handling data sets that do not fit entirely into CPU or GPU memory. However,

Gigavoxels is not optimal for visualizing purely opaque surface data, because this system uses an
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uncompressed voxel brick structure, which increases the memory consumption. In GigaVoxels,

smoothing of voxels near the camera is solved by utilizing 3D texture filtering.

One of the most well-known point based rendering methods, Qsplat [5], inspired many other
researchers to propose similar rendering approaches. As an evolution of Qsplat, FarVoxels [8]
improved the basic point-based rendering by introducing a hybrid method that also utilizes
polygonal rendering for geometries close to the viewpoint. However, as these methods employ
either point-based rendering or a combination of point-based and polygonal-based rendering, they

suffer from the disadvantages described in this section, compared with voxel-based rendering.

Input Data

For the voxel input data, the proposed algorithm has several conventional and therefore not novel,
original or unique data import functions that are necessary to read input data from files and to

convert them into voxel data in a pre-processing step prior to the visualization.

Polygon Data Import

This import function can import Stanford polygon (PLY) format data. The format is specified as
indexed face list. An example for this format is publicly available at their URL”, along with more

details on the specification and its development.

p3

p2

pl

Figure 4.1 Rasterization of a single 2D triangle.

The proposed method accepts only triangulated mesh data. The PLY format supports general
polygons without holes. To convert mesh triangles into voxel data, the vertex positions py, P, P3,
of each triangle are converted into the voxel grid coordinate system first (Fig. 4.1). Then linear
interpolation along two of the three edges (pyp,) and (pp3) is carried out. The number of

sample points along both edges is defined by the distance between the edges as follows:

samples = 8 - max(llp; — pall. llps = p1lD- (4.1)

Next, two interpolated positions along (p; p,) and (py p3) are defined as p,, and p;3. The final
position is the interpolation between positions p;, and p;3. For each position between p;, and p;3

corresponding voxel in the three-dimensional voxel-space are determined and set it to opaque

S PLY - Polygon File Format. http://paulbourke.net/dataformats/ply/.
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color. By doing this, each triangle of the input polygon data can be efficiently rasterized. An
example of rasterized result is shown in Fig. 4.2.

Figure 4.2 Rasterization of 3D Polygon Data: Imported result of the Happy Buddha PLY Dataset with

approximately one million polygons.

Volume Data Import

As a source for sample volume data, The Volume Library™ is used, in which various data-sets are
available for free. Since the proposed visualization method focuses on visualizing opaque data
and semi-transparent data sets that derive from medical scans such as MRI (Magnetic Resonance
Imaging) or CT (Computer Tomography) scans, a threshold that determines if a semi-transparent
voxel is rendered opaque or transparent needs to be applied. This threshold is also known as iso-
value. The semi-transparent input data is therefore converted into binary voxel data. The imported
result from the original bonsai dataset of the volume library (Fig. 4.3) can be seen in Fig. 4.4. A
color gradient to emphasize the voxels that represent the trees leaves is applied in addition to the

basic import.

%6 The Volume Library. http://www9.informatik.uni-erlangen.de/External/vollib/.
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Figure 4.3 MRI Bonsai Data-Set: A screenshot of the original semi-transparent data rendered in
V3, available at The Volume Library.
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Figure 4.4 Volume-Data Import: A forest scene created by the voxelized Bonsai data-set.

Procedural Voxel Objects: Trees

A procedural voxel tree generator based on Lindenmayer systems (L-system, [38]) has been
developed to create complex trees with high resolutions. The used algorithm creates a tree based
on branches that consist of 3D voxel spheres of variable size, as shown in Fig. 4.5. The branches
are created by recursively inserting spheres in the middle of two endpoints as shown in that figure.
Additionally, random-midpoint-displacement is applied in order to get a more natural result of the
branch. The entire tree is generated by starting with one branch from the root and then
continuously splitting this branch into two to three smaller branches. Finally inner voxels that are
invisible are removed. This operation is done to reduce the memory of the entire dataset. Figure
4.6 shows the result of trees generated by this method.
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Basic Sphere — The Tree’s Atom

Branch: Created from Spheres and Random Midpoint Displacement

Tree: Created Recursively from Branches

SHCOS

Figure 4.5 Tree Generation: The tree is created using spheres, random mid-point displacement and finally

the L-system.
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Figure 4.6 Example of Procedural Voxel Trees.

4.4 Proposed Algorithm

The explanation of the algorithm is split in two sections. Section 4.4 explains the algorithm
overview, the proposed approach, the algorithm overview, the pre-processing and the level-of-
detail computation. Section 4.5 elaborate on the visualization, which is the heart of the algorithm.

4.4.1 Overview

As explained in section 4.1, none of the related methods possesses all of the following two
properties: low memory consumption and high rendering performance (fast rendering). Therefore,
the purpose of this research is to find an optimal combination of all of the two properties.
Furthermore, memory consumption can be reduced by not storing the normal vector inside the
voxel data, but recovering the normal as a post-process in screen-space.
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Overall, the following goals should be achieved:

¢ Significantly lower memory consumption compared to other methods.
e High rendering performance even in complex environments at interactive frame-rates
from arbitrary viewpoints.

e  Support for recovering the voxels’ surface normals from the depth buffer.

The proposed approach is based on the so-called “voxel-based forward projection algorithm”
developed by Wright et al. [39], which renders voxel data with lower memory consumption than
the Shear-Warp algorithm. The original voxel-based forward projection algorithm is modified to
deal with completely arbitrary voxel data, as it is done in the unpublished work of Silverman®’.
The original forward projection algorithm categorized the data into two groups: terrain, and
objects that are placed on the terrain, such as trees and buildings. Each of these two groups of data
have its own rendering technique. Silverman‘s method and the proposed approach store voxel
data in a uniform way as RLE data. According to [17], RLE is the second fastest algorithm to

decode lossless compressed volume data.

The advantage of storing the data in a uniform way as opposed to categorizing the data into
groups is that the data can be rendered using the same algorithm, which results in reducing the

complexity.

The chapter is organized as follows. Section 4.4.5 outlines the proposed method. Section 4.4.6
explains the pre-processing. Section 4.5 elaborates on the rendering by the GPU, Section 4.6

evaluates the proposed method experimentally and Section 4.7 concludes this chapter.

Improvements over Previous Work

The proposed method is an extended and improved version of the original work by Wright et al.
The extensions and improvements are summarized as follows:

e The proposed method is completely optimized for highly parallel single instruction
multiple data (SIMD) processing on the GPU and uses newest NVIDIA CUDA
technology for the fastest possible visualization. The original method of Wright et al.
cannot directly be applied to GPU efficiently as it is not optimized for parallel processing
and also not aware of features and constraints of the GPU architecture.

o  The proposed method uses the GPU’s shared memory to store a local one-bit-per-
pixel visibility map, which could significantly improve the speed.

o  The proposed method uses the GPU’s texturing technology together with the pixel
shader to apply the fast unwrapping of the temporary buffer to the screen. The

57 Silverman, Ken. Voxlap engine. 2003. http:/advsys.net/ken/voxlap.htm.
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original method projected one pixel after another onto the screen, causing holes that
needed to be filled in multiple sampling steps. Using such a method on modern
GPUs could cause many incoherent memory accesses, which is very inefficient.

e The proposed method uses the Digital Differential Analyzer algorithm for stepping
through the RLE voxel data to achieve accurate intersections, which could significantly
improve the visualization quality. Each voxel is therefore visualized correctly as a cube.
The original method used equidistant sampling, which is more simple, but not as accurate.

e The proposed method uses an advanced floating horizon algorithm, which allows
speeding up the rendering significantly compared to the original floating horizon
algorithm. It is able to merge disconnected segments. The original method focused on
height-map based terrains; therefore disconnected vertical segments were not as important.

e The original method stores only two colors for each vertical RLE element. The proposed
method can accommodate up to 64 voxels in one element, which is a significant
improvement for complex, dense textured, scenes. Therefore, fewer vertical segments for
the same scene are required, which improves the performance and saves memory.

e The proposed method uses perspective correct texture mapping to achieve the vertical
coloring of one RLE element. The original method only used two colors per element;
therefore they did not require this feature.

e The proposed algorithm applies a post process filtering to the rendering result to remove
jaggies at voxel boundaries for voxel close to the camera and create a smooth, yet well-
defined silhouette. To further improve the quality, a second part of this filter also applies
smoothing across the area enclosed by the smoothed silhouette, which leads to a better
result. The original method did not provide this feature.

e The proposed method is able to recover normal vectors from the depth buffer in a post
process. This saves memory as the normal vectors do not need to be stored along with the

volume data. The original method did not provide this feature.

Difference to Volume Rendering

The proposed approach is very different from volume rendering methods, because the proposed
method is focused on surface voxel data. Volume rendering methods commonly integrate color
and opacity by tracing a ray through the semi-transparent volume data (such as an MRI image) for
the final result. They do not directly visualize the surface as intended here. They further have
much higher memory consumption as they not only store voxels that represent the surface but the

entire solid data.
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Trends in CPU and GPU Development

To accelerate the rendering process, the proposed approach, for the first time, integrates the entire
rendering algorithm on the GPU by using NVidia’s CUDA and the Pixel Shader. The choice for
the GPU rather than CPU for computations is clearly shown in Fig. 4.7, where performance of
CPU and GPU over the past years is compared. It can be seen that the GPU develops much faster
in terms of theoretical GFlops (left) and theoretical memory bandwidth as well. GPU can
overcome the CPU’s two bottlenecks: the floating point performance and the memory bandwidth.
It can be seen that also in future versions of CPU and GPU, the GPU could remain faster in terms

of floating point performance and memory bandwidth

Until recently, graphics hardware was incapable of supporting random writes, which are crucial
for the proposed method. However, now it has become available with NVidia CUDA and
OpenCL.
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Figure 4.7. Hardware comparison: CPU vs GPU in terms of theoretical GFlops and theoretical
memory bandwidth (source: NVidia’®)

58 NVIDIA, "CUDA Toolkit Programming," NVIDIA. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html . 2013
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Details of the proposed Algorithm

As shown in Fig. 4.8, the 3D surface voxel data exists in the x-y-z world coordinate system,

where the x-z plane is the horizontal ground plane.
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Figure 4.8. Proposed algorithm: (a) side view, (b) top-view.

As shown in Fig. 4.9, the algorithm consists of a series of steps, starting with the pre-processing
step and ending with rendering the scene and changing the viewpoint. In the pre-processing step,
the voxel data is run-length-encoded for each LOD in the vertical (y) direction. It is important that
the encoding direction is vertical, because this leads to a higher average speed of the algorithm for
the general case, when the camera looks towards the horizon. The details of this pre-processing
step are described in Section 4.4.6. As shown in Fig. 4.9, after copying the RLE data to the GPU
memory, the loop for visualizing the RLE data from the viewpoint at each time instant starts. As
can be seen in Fig. 4.8, the proposed method visualizes the scene in planes that are perpendicular
to the x-z plane and share the straight line that passes through the viewpoint and is parallel to the
y-axis (Down-vector). Ray casting the RLE data in each concentric plane is done step-by-step
from near to far along the x-z plane, while the rasterization is done for each step in the vertical
direction (parallel to the y axis) from top to bottom. To be more specific, for each step in the x-z-
plane, all the RLE elements in the corresponding column are rasterized by projecting them into
the screen space. Since the projection of each concentric plane is a line slanted across the screen
space, the results of rendering the planes are stored as temporary bitmap for performance reasons.
The temporary bitmap is then mapped to the screen using the Pixel Shader. The render loop
consists of the following five pipe-lined major steps referenced as 4.1 to 4.6 in Fig. 4.9,

corresponding to this chapter’s sections 4.5.1 through 4.5.6.
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Pre-Processing: Compress Raw data to RLE data
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Figure 4.9. Pipeline for the proposed method: in “Render Scene” Section, numbers are indicated.

Step 1. Compute the vanishing point:

The vanishing point of all concentric plane’s around the downward vector is computed on the
CPU. As shown in Fig. 4.8, the vanishing point vp (red dot) is the intersection between the screen
plane and the Down-vector. The vanishing point needs to be computed first (Section 4.5.1), before

the concentric planes are computed (Section 4.5.2).
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Step 2. Compute the concentric plane parameters on GPU:

The parameters of each concentric plane, which are needed for the rendering process, are
computed on the GPU (Section 4.5.3).

Step 3. Render the planes on GPU:

In each concentric plane, a ray is cast in the x-z plane from the x-z-coordinates of the viewpoint to
the maximal view-distance. For each x-z-position, the corresponding column of all RLE elements
is rasterized from top to bottom for the selected LOD (Section 4.5.4.1) at this distance. For each
RLE element, the projection of the coordinates to the ray-buffer is performed first (Section
4.5.4.2). Then, culling is performed (Section 4.5.4.3). Finally, the element is rasterized as a
textured line in the ray-buffer (a temporary bitmap) (Section 4.5.4.4).

Step 4. Display the temporary bitmap on the screen:

The GPU Pixel Shader is used to rearrange the rows of the temporary texture to a radial pattern of

straight lines centered at the vanishing point on the screen (Section 4.5.5).

Step 5. Improving quality:

In the post-processing step, blocky appearance of voxels is reduced by smoothing the voxels. To

improve the rendering quality, smoothing voxels is followed by anti-aliasing (Section 4.5.6).

In order to allow shading computations without storing normal vectors inside the RLE volume

data, a special method recovers the normal vectors from the depth buffer (Section 4.5.6.3).

4.4.6 Pre-Processing

4.4.6.1 Organization

The original source data to be visualized can either be volume data or polygon data. In case of
polygonal data, the voxelization is simply done by rasterizing each triangle is voxelized into a 3D
regular grid of voxels. As described earlier, the voxelized data is compressed in the vertical (y-
axis) direction from top (larger y coordinates) to bottom (smaller y coordinates) using run-length
encoding (RLE). More specifically, each vertical RLE column is compressed separately and
referenced by one pointer of a two-dimensional lattice placed in the x-z plane, where the scale-
factor of the lattice for the x and z directions are normally uniform, respectively. As shown in Fig.
4.10, not all the voxels of a solid volumetric object is run-length-encoded. To reduce the memory
consumption, only surface voxels are finally stored, while occluded inner voxels are removed.

Section 4.4.6.2 elaborates on the specific data structure of the RLEed voxel data.
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Uncompressed Surface RLE Compressed

X,Z

Figure 4.10 Pre-Processing: The initial volume data (left), removal of non-surface voxels (middle), RLE
compressed (right).

4.4.6.2 Data Structure

The data structure of the voxel data should be able to utilize GPU performance as much as
possible, and it is therefore optimized based on statistical evaluations of experimental results. As
shown in Fig. 4.11, the entire data structure basically consists of two parts: the pointer map and
the RLE columns. Each element of the pointer map (the lattice in the x-z plane) stores three
different variables: the pointer to its corresponding RLE column buffer (described below) the
number of RLE elements (defined below) included in that RLE column as well as the first (top-
most) RLE element, consisting of “skipped voxels” and “drawn voxels”. An RLE element is
defined as a set of two sequences; first a sequence of skipped voxels, and second a sequence of
drawn voxels. A skipped voxel corresponds to an invisible, un-set, voxel that is not stored, and a
drawn voxel corresponds to a voxel that is stored in the RLE structure with RGB color data. For
example, in the decoded voxel-space illustrated in the right side in Fig. 4.11, white voxels
indicate skipped voxels, and colored voxels indicate drawn voxels, respectively. In the left-most
voxel column, the two voxels from the top are skipped (not drawn), and just below there is one
(colored) drawn voxel. Therefore, “2” and “1” are stored in the “skipped voxels” field and “drawn

voxels” field in the pointer map element of the RLE structure in the left side, respectively.

As shown in Fig. 4.11, each RLE column is referred to by a pointer of the pointer map. A
referenced RLE column stores the numbers of skipped voxels and the number of drawn voxels
starting from the second RLE element. The first RLE element is stored inside the pointer map. In
addition, the buffer for RLE column stores the color for each drawn voxel in the order of the
voxels’ appearance in the RLE column. To achieve efficient computation by GPU, the number of
memory accesses has to be minimized. 64 bit elements are therefore stored in the pointer-map, as
64 bit is the largest amount of memory that can be pulled in one read by the NVIDIA GPU used
by this thesis. Note that one 64-bit element includes all the data required to test the visibility of
the first (topmost) RLE element. This strategy increases the rendering performance (speed)
particularly for large outdoor environments and landscape-like scenes with hills and mountains.
This is because one memory read is sufficient to test the visibility for approximately 90% of all

rasterized elements according to preliminary studies.
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Figure 4.11 Data structure:Pointer-map: For each pointer-map element’s data, one RLE column is to

pointed by a pointer and decoded by RLE .

Level-of-Detail Computation

As described previously, the individual RLE data for each level of detail is obtained in advance
prior to the visualization process. The idea of texture mip-maps is applied to the original RLEed

voxel data and generate RLEed mip-volumes™.

The original RLEed voxel data has the highest resolution and is used for the LOD that
corresponds to the range closest to the view point. As the distance from the viewpoint gets larger,
RLEed voxel data with lower resolutions are used. More specifically, suppose that 1ev denotes a
level of detail, where 1ev ranges from 1 (highest resolution) to L (lowest resolution); the size
(length of a side) of one voxel in the level 1ev (2) is twice as long as that in the level lev-1,
where linear down-sampling is applied to the voxel data in the level 1ev—1 so that the voxel data
in the level lev is obtained. For example, an original volume of 16 X 16 X 16 has four mip-
volumes: 8 X 8%X8,4Xx4%x4,2x2x2,and 1Xx1Xx1. As described in the following, the
resolution is dynamically chosen by the visualization process, depending on the distance to the

viewpoint.

% A mip-map is a lower resolution copy of an original image. For a mip-map, a number of downsampled
copies of the original image are created, each representing one level of detail. The exact number of these
copies is depends on the pixel size (width, height) of the original image. For the visualization, high
resolution images are used near the view point, and lower resolution copies of the original are used for
distant visualizations to save memory bandwidth [64]. Mip-volumes are the three dimensional extension
of mip-maps.
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Rendering

The rendering for each frame consists of multiple steps, as displayed in Fig. 4.9 and described in
Section 4.4.5.

Vanishing-Point

The vanishing point vp, the point at which all the concentric planes meet in the screen plane (see
Fig. 4.8), is computed first. Each plane is projected to the screen as one straight line and all the
lines meet at vp. The vanishing point can easily be obtained by intersecting the vertical line that is

parallel to the y-axis and passes through the viewpoint with the screen-plane as follows:

0 -a
vp = [(1)] Sin(ayy (4.2)

where d denotes the distance between the camera origin (view point) and screen-plane, and a,,
represents the camera's pitch angle, which is defined as the rotation around the horizontal axis (the
x-axis) of the camera coordinate system. A pitch angle of zero means that the optical axis of the
camera is horizontal. The vanishing point is projected to the screen space by the following

equation:
VUDscreen = Acam * VD» (4.3)

where Vpgqreen represents the projection of vp to the screen space, A4y, represents the 4 X 4

camera matrix. Each plane intersects the screen as one line originated in Vpgcpeen (Fig. 4.8).

Concentric Planes

Since each plane is projected to the screen as one line that is originated in Vpg.een, achieving a
complete coverage of the screen by the lines originated in vpgpeen is essential. To achieve this, as
shown in Fig. 4.12, the screen is partitioned into four segments, where the borderlines between
adjacent segments meet at VP reen. and the angle between adjacent borders is 90 degrees. Each
line included in the left and right (with respect to VP reen) Segments is textured in the horizontal
direction, while the upper and lower segments are textured in the vertical direction. The number
of lines included in each segment depends on the number of pixels on the screen border in this
particular segment. This implies that each pixel in the screen border of a segment should be the
end of a line (projected plane), whose another end iS VPgcpeen. The number of planes (lines) can

be calculated as follows:

np; = 2 - dist(VPscreen, bordery), re[1..4], (4.4)
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Figure 4.12 Screen segmentation: VP represents the vanishing point; Seg 1 to 4 refer to segments 1 to 4

respectively.

where np; denotes the number of planes for a given segment;, border; denotes one of the four
borders of the screen, and dist() indicates the computation of the distance in pixels between
VUPscreen @and border;. The parameters UPscreen and np;, which are computed by CPU, are

transferred to GPU for the subsequent computations.

Plane Parameters

As described in Section 4.4.5, all the calculations described in the rest of Section 4.5 are executed
on GPU in a parallel manner by using multiple threads. The number of simultaneous running
threads depends on the number of processing units (GPU cores) of the underlying hardware. In
this case, 240 processing units are available. The parameters to be computed for each plane are as
follows (Fig. 4.8): the start and end point’s (X,y,z) coordinates of the projected line in the screen
and the plane's rotation around the y-axis. The start and end points are used for rendering and
clipping the projected RLE elements to the screen. The rotation around the y-axis defines the

orientation in which marching through the RLE structure is performed (Section 4.5.4).
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Rasterizing the Ray Buffer

The RLE elements are visualized in two steps. In the first step elements are rasterized to a 2D
temporary ray-buffer, each row of which stores the projected result of one concentric plane. In the

second step, the temporary ray-buffer’s contents are texture-mapped to the screen.

4.5.4.1 Traversal per Plane

To rasterize the RLE elements to the temporary ray-buffer, the pointer-map is traversed. The map
is placed in the x-z plane as shown in Fig. 4.8 and Fig. 4.11. As shown in Fig. 4.8, the straight
line in which a concentric plane and the pointer-map (x-z plane) meet is considered. For a point
(an element of the pointer-map) on the straight line, the RLE elements (voxels) visible from the
viewpoint are rasterized in the radial line in which the concentric plane and the screen meet. This
process starts from the point just below the viewpoint and traverses the pointer-map in the x-z
plane till it reaches the point that corresponds to the predefined maximal distance from the
viewpoint. During this traversal, culling, which is explained in Section 4.5.5, is performed for the
visibility check. The traversal is not equidistant as it is often done in volume visualization. As
shown in Fig. 4.13, equidistant traversal performs equidistant sampling of the pointer-map’s

elements on the straight line.

-

Equidistant raycasting Exact raycasting

Figure 4.13 Equidistant and exact raycasting: Left: Equidistant; Right: Exact raycast; Upper:

sampling; Lower: Example of rendering.

This is simple, but leads to errors in the visualization. Instead, an exact grid traversal is applied,
which correctly samples all the 2D grid intersections during the traversal according to [40]. In Fig.
4.13, the visualization results of the exact traversal and the equidistant traversal are compared.
The exact traversal requires slightly more computational effort, but the result is significantly
better. During the above-mentioned traversal, LOD needs to be switched according to the distance
from the viewpoint. The LOD is selected according to the distance between the viewpoint and a

point on the line in which the concentric plane and the x-z plane meet. Suppose pd is a predefined
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distance along the line. From p,, the point below the view point, to p;, which is away from p, by
pd on the line, the RLE data (voxels) with the highest resolution is used for the rasterization;

similarly, from p, to p,, which is away from p; by pd, the second highest resolution is used, etc.
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4.5.4.2 Projecting RLE Elements to Ray-Buffer

As mentioned earlier, the visible part of each RLE element is rasterized to the temporary buffer as
a textured line, where the x, y and z coordinates of the start-point ps and the end-point pe are the
3D world space coordinates of the particular RLE element. The points ps and pe are projected

into the screen-space using the camera matrix A4, as follows:

PScam = Acam DS
Pecam = Acam ' D€,
s _ PScam-X] 1
PSscreen PScam-Y)  psogr.z’ (4.5)
_ [Pecam-X 1
bo (x) - [pecam- y Pecam-Z '

In Eq.(4.5), pScam and pe.qmcontain the x,y, and z coordinates of the ps and pe in the camera
space. The camera space is defined as orthonormal-basis, where the origin is placed at the view-
point, the z-axis a straight line from the viewpoint towards the center of the screen, the x-axis a
straight line towards the origin and parallel to the upper and lower screen border and the y-axis a
straight line towards the origin and parallel to the left and right screen border. The variables
PSscreen @Nd Pecreen are the two dimensional ray-buffer coordinates of ps and pe. As described in
Section 4.5.2, either the horizontal (x) or vertical (y) component of the start and end coordinates is
used for rasterizing RLE elements into the ray-buffer. In the ray-buffer, the projection of each

plane is represented as one column, as shown in the upper half of Fig. 4.14.

Therefore, either the horizontal (x) or vertical (y) coordinates of the start and end-point are used
to define the vertical 1D position inside the column of the ray-buffer. In Fig. 4.14, Segments 1
and 3 use the horizontal (x) coordinate, while Segment 2 and 4 use the vertical (y) coordinate of
DSscreen aNd pesereen. After the start and end positions inside the column are determined, visibility
culling is performed (detailed in Section 4.5.4.3), before the textured rasterization is done
(Section 4.5.4.4).

4.5.4.3 Culling

As described in Section 4.5, culling needs to be performed to render only the visible parts of RLE
elements and efficiently skip RLE elements that are invisible. In this work three culling methods
are used, including novel and known methods. It is possible to combine these culling methods for
optimal performance. However, utilizing all the algorithms simultaneously is not efficient due to
mutual interference. It is efficient to use the floating horizon algorithm together with shared
memory culling or per pixel forwarding. However, shared memory culling and per pixel

forwarding interfere, because they are both executed on a per-pixel-level.
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Figure 4.14 Ray mapping: 1 to 4 denote segments 1 to 4; Upper: The temporary buffer with the four
segments; Lower: mapping to the screen.

4543.1 Modified Floating Horizon

The well-known floating horizon algorithm, which was used in the original voxel forward
projection algorithm [39], is utilized also here. The floating horizon algorithm does not conflict
with the other two used culling methods and can hence be used in combination with them. The
algorithm works as follows.

For each rendered plane, two offset values the start and end-offset along the projected line in the
screen define the bounds of the render-able area and are stored. Once one RLE element that
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touches the start or end offset is drawn, this particular offset is updated to narrow the bounding

area along the line, which allows to cull more RLE elements.

Using the floating horizon algorithm is possible, because opaque scenes are rendered from near to
far, which means that every pixel is drawn only once. However, the basic floating horizon
algorithm works well only for height-map based scenes such as mountains. In case of complex
scenes such as a tree, unconnected segments rasterized along the line cannot be handled
efficiently by the original algorithm. Therefore, a small but significant modification is added to
the original method so that good performance is achieved even in complex scenes. The
modification is as follows: after one RLE element is rasterized that touches either border, the
offsets are updated to enclose this particular RLE element. Pixels next to the new offsets are
further tested if they have been drawn already. If they have been drawn already, the bounds are
narrowed to enclose these pixels too. Depending on the scene, this modification accelerates the

culling process up to two times.

45432 Shared Memory

The shared-memory culling algorithm takes advantage of the fact that the proposed method draws
every pixel in the screen only once. This means a binary map is sufficient to store the visibility
information in the screen. This visibility map consumes little memory and therefore fits entirely
into the graphic cards shared memory. The hardware used by this thesis, the NVidia GTX series,
provides two main types of memory: Global memory and shared memory. The difference between
both types is that a memory access to global memory consumes about 300 processor cycles, while
an access to the shared memory only requires one cycle. Therefore, using a binary visibility map
stored in the shared memory, per-pixel culling works very fast without accessing the slower
global memory. Actually shared memory culling accelerates the rendering speed by 40% to 140%,

depending on the scene compared to global memory.

4.5.4.3.3 Per Pixel Forward

Lacroute’s culling based on per-pixel forwarding [35] is slightly slower and more complex than
the previously described shared memory culling, but it is needed for screen-resolutions where the
number of simultaneously processed pixels of the screen exceeds the number of bits available in
the shared memory. The shared memory is 16384KB in this thesis’ case. Using 128 parallel
threads leaves 128 bytes or 1024bit for using shared memory culling, which is reduced to
effective 900bits due to shared memory reserved for program parameters. Each bit stores the
visibility for one pixel. In case of the hardware that was used by this thesis, this happens at screen
resolutions with more than 900 pixels in the vertical direction. The per-pixel forward algorithm
works as follows: for each pixel in the temporary buffer a relative jump offset is stored. This
offset is set to zero in the beginning and is updated to the next empty pixel once an RLE element
is drawn as shown in Fig. 4.15. Eeach offset in the skip buffer points to the next free pixel. The
RGB color buffer contains the colors of the visualized RLE elements. In this case, this thesis uses

a blue and green example pattern, but it could be any other color too.
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Since relative jumps help to skip pixels efficiently, a speed-up of approximately 1.08 to 2.0 times
compared to not using skip pixels is achieved, which is significantly faster than the floating

horizon algorithm alone, but approximately 20% slower compared to shared-memory culling.
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Figure 4.15 Skip-Buffer.

4.5.4.4 Drawing RLE elements as textured Lines

4.5.5

Each RLE element is rasterized into one or multiple columns of the temporary ray buffer as a
texture mapped line, using the coordinates of ps and pe as the vertical positions in the column.
Using texture mapping the overall computation significantly speeds up, because voxels are
rendered as a group rather than individually (the data structure is described in Section 4.4.6.2). To
achieve a proper appearance, perspective correct texture mapping is applied. Simple non-
perspective texture mapping interpolates the 2D texture coordinates, which leads to an
approximated but inaccurate visual appearance. Perspective correct texture mapping uses not only

the 2D texture coordinates but also the depth coordinate (z), which leads to a correct result.

Displaying the Ray-Buffer

The texture stored in the temporary ray buffer can be efficiently be mapped to the screen by using
the graphics card’s Pixel-Shader. To achieve this, the source (U,V) texture coordinate is
calculated in the ray buffer for each target pixel (xs, ys) on the screen. The mapping is applied in
a concentric manner with respect to the vanishing point vp as shown in Fig. 4.14. The formula to

compute the source (U, V) texture coordinates inside the ray-buffer is given by Eq.(4.6).

Uyy = (xs—vp.x)-|lys—vp.yl+s,4,
Vou = ys—vp.y,
’ (4.6)
Uz = (ys—vp.y):lxs—vp.x| + 53,
Vis = xs—uvp.x.

where U defines the horizontal coordinate inside the ray-buffer, V the vertical coordinate, xs the
horizontal screen coordinate, ys the vertical screen coordinate and s the start-offset that is added
for the corresponding segment of the ray-map. The indices of U,V and s represent the segment
index as numbered in Fig. 4.13. The valid range of the texture coordinates (U, V) as well as the

screen coordinates (xs, ys) ranges from O to 1.
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Quality Aspects

As shown in the flow-chart of Fig. 4.9, the quality of the image rendered in the screen is
improved at the final stage of the rendering pipeline. Since conventional texture mapping
functions of the graphics card are used, texture filtering, which is natively supported by every
GPU, can be applied without any performance impact. Two methods are employed to improve
quality: smoothing and anti-aliasing. The combination of both algorithms, smoothing and anti-

aliasing, can significantly improve the rendered image quality.

4.5.6.1 Smoothing

Smoothing is applied as a post-process in image-space by the Pixel Shader, where a special
smoothing method achieves two types of smoothing in one shader pass: Smoothing of voxel
silhouettes and smoothing of voxels close to the camera. Figure 4.16 shows an example of the

result of this method.

Normal . Silhouette

Figure 4.16 Smoothing results: Left: without smoothing; middle: smoothed silhouette; right: smoothed

interior part

The smoothing consists of multiple steps, as illustrated in Fig. 4.17. Step a) shows the target pixel
in the original image. In step b), the minimum depth of eight pixels that lies in a circle around the
target pixel is searched. The radius is fixed for this operation. In step c¢) a box filter for 5 X 5
pixels is obtained, where the scale factor of the box filter is determined by the previously obtained
minimum-depth. For the smoothing, only pixels, whose depth values are close to the minimum
depth, are averaged. Step d) shows the result, which demonstrates both the silhouette and the

inner region in the example are smoothed well.
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a) Current pixel b) Nearest Z ¢) 5x5 Box filter d) Result
of 8 pixels with threshold

Figure 4.17 Smoothing steps: a) Target pixel; b) Find minimum depth (Z); ¢) Box-filter with threshold,

scaled according to the minimum depth; d) Result.

4.5.6.2 Anti-Aliasing

For further improvement of the quality, full-screen anti-aliasing (AA) by rendering the scene with
a higher resolution and down-sampling the rendered image is applied so as to obtain the target
resolution. Figure 4.18 compares three configurations: without AA (Non-AA), 2 X 1 pixel AA
(2x1AA) and 2 X 2 pixel AA (2 X 2 AA). For 2 X 1 AA, two horizontal pixel are averaged to
one pixel in the visualized image. For 2 X 2 AA, two by two rendered pixel are averaged to one
pixel in the visualized image. Obviously, 2 X 2 pixels AA and 2 X 1 pixels AA give the best and
second best quality, respectively.

Figure 4.18 Anti-aliasing (AA): left: Non AA; middle: 2x1 AA; right: 2x2 pixel AA.
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4.5.6.3 Screen Space Normals (SSN)

To visualize large data sets such as the Richtmyer-Meshkov on consumer graphics cards with
only 256MB RAM, storing all the surface normal needed for shading is heavy burden for the
computation. Instead the surface normal n for shading can be approximated from a few samples in
the depth buffer by Eq.(4.7).

Zs = Depth(x,ys),
Ax = x,—rnd(1/z),
Ay = ys—rnd(1/z),
Depth(x, + Ax, ys + Ay)
dz, = z,— p s - Ys T+ Ay ’ (4.7)
X
Depth(xs + Ax, ys + Ay)
dz, = zs— Ay
no= (10 dzyx( 0 dz);

where xg, and y; represent the horizontal and vertical coordinates of a pixel in the screen,
respectively; Depth(,) represents the depth of the pixel (argument) in the depth-buffer; rnd is the
random function to achieve an averaged result for multiple samples; and operator X for
computing n is the standard vector cross-product.

Note that Eq.(4.7) indicates that the sample region needs to be reciprocal in size to the sampled
depth value z; of the pixel (xg and y;). In case the pixel is close to the camera, a large region is
needed and vice versa. To achieve a satisfying result in the experiments, at least 16 samples from
the depth-buffer should be used. Since computing a random value by GPU is slow, a random
value is sampled from a texture instead. As SSN and SSAO [41] sample the depth-buffer in a
similar way, it is possible to efficiently combine both methods in only one shader-pass. An
example of the result is demonstrated in Fig. 4.19.

Screen Space Normals (SSN) SSN Shading + Screen Space Ambient Occlusions
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-

Figure 4.19 Normals: The depth-buffer can successfully be utilized to compute normal vectors on-the-fly
(Left). These can be utilized for shading and further enhanced with screen space ambient occlusions (Right).
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Experimental Results

Experimental Conditions

Experiments with multiple scenes are conducted to evaluate the proposed algorithm in terms of
rendering speed, memory consumption, and quality aspects. The scenes used for the experiments
are shown in Fig. 4.20.

The experimental system consists of a Pentium-D 3.0 GHz Processor with 1 GB of RAM and a
GeForce285 GTX (1024MB) graphics board with 240 stream processors. As shown in Fig. 4.9,
NVidia CUDA is used to compute the ray casting part of the algorithm, while texture mapping the
temporary ray-buffer and the post-processing are executed in the Pixel-Shader. The render-
resolution for all the tests is set to 1024 X 768 pixels, while the AA setting for improving quality

is 2 X 1, which provides the best tradeoff between quality and performance.

Memory Consumption

Table 4.1 shows the result of benchmark tests, for the six 1024x768 pixel scenes shown in Fig.
4.20, where bits per voxel indicates the number of bits required for storing the position
information of one voxel, taking the pointer-map and mip-maps into account as well. The bits
used to store the position of one voxel range from 10.83 to 26.3, which is significantly less than a
pointer-based octree, which requires 32 bits only for the tree leaves, and sums up to about
32*(1+1/8+1/64+..)=36.8 bits for the entire tree.

However, in some scenes the proposed algorithm requires more memory than splatting-based
algorithms such as QSplat, which only utilizes 13 bits per leaf. As described earlier, the accuracy
of splatting-based methods is limited to the size of the splats; therefore, in particular,

unreasonably sharp edges tend to degrade the image quality.

Table 4.1 Benchmark Tests: The RLE element count in the frustum (Total), the processed element count
(Proc) and the rendered element count in million (Ren). The resolution is stated in voxel. Further, Fps

denotes frames per second and Speed is given in million RLE elements per second (Elems/s)

Scene RLE Elemtes (in million) Fps  Speed Resolution Compression
1024x768, 2x1 AA | Total | Proc Ren Elems/s x/y/z Bit/Voxel
Procedural 14.1 7.7 0.58 47.5 | 365.75 1k/1k/1k 17.9
Bonsai 8.8 8.7 0.35 21.7 | 188.79 512/512/512 18.25
Buddha 313 | 7.38 0.4 48.2 | 355.72 1k/2k/1k 12
Mansion 11.48| 3.1 0.43 78.5 | 243.35 1k/256/1k 10.83
Dragon 2.67 | 1.67 0.29 67.1 | 112.06 1k/1k/1k 26.3
Bunny 1.34 | 1.34 0.24 68.2 | 91.388 1k/1k/1k 22.89




4.6.3

Chapter 4 Static Objects 101

512x512x512 , Viewdist 40.000

1024%1024%10247 Viewdist 3000

Figure 4.20 Scenes used for tests: Handcrafted mansion (upper-left), Bonsai forest with 3000 trees
(upper-right), Hotei, or Happy Buddha, (middle left) and a Procedural Landscape with about 4000 visible
trees (middle right), the Stanford Dragon (lower-left) and the Stanford Bunny (lower-right). Unit for the

number is given in voxels.

Algorithm Speed

To measure and evaluate the rendering speed, the maximum polygon performance of the graphic
card used in this thesis was determined first. In case of rendering as a quad by two textured
triangles, rendering speed of 350 Million triangles per second is the limit of the graphic card for
rendering triangle strips. However splatting-based rendering reaches 100 Million primitives
(splats) per second. Table 4.1 shows that the proposed algorithm achieves a high count of
processed RLE elements per second (Speed, Elems/s); i.e. ranging from 91 to 365.8 Million RLE
elements per second. This speed even outperforms the default OpenGL rendering pipeline, whose
rendering speed is up to 350 Million disconnected triangles/s.
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Further information in Table 4.1 includes the total number of RLE elements inside the view
frustum (RLE Elem total), the number of RLE Elements that have passed the culling test (RLE
Elements, ren), frames per second (fps) and the resolution in voxels for the instance single of each

dataset (Resolution).

For testing the performance in case of large outdoor areas, scenes containing more than 1000
instances of the same data set are created for the procedural scene and the bonsai scene. The

maximal view distance is set to 40000 voxel in both cases.

The results for the large outdoor scenes of the bonsai and the procedural dataset are also listed in
Table 4.1. They were included in the tests, to evaluate the performance, the compression ratio and
the quality as well. The results show that the procedural dataset achieves the highest performance
in RLE elements per second. The bonsai data-set achieves not the same high performance as the

scene is not suited well for the used culling algorithms.

To compare the GPU performance with the CPU performance, the proposed method was executed
on the CPU as well. As a result, it turns out that the GPU version, tested on an NVidia GeForce
285, is three to seven times as fast as the CPU version, executed on a test system with an Intel
Core2 Quad Q6600 CPU with four cores running at 3 Ghz each and 1GB RAM. The GPU
outperformed the CPU by factor of three for simple scenes without AA and factor of seven for

complex scenes, with AA enabled. The scenes used for testing are shown in Fig. 4.21.

s

GPU 44 fps CPU 15fps [ll GPU34fps CPU8fps [l GPU36fps CPU 5 fps

Figure 4.21 GPU vs CPU: The GPU version running on an NVidia GTX 285 is compared to the CPU
version (Intel Q6600 4x3Ghz).



Chapter 4 Static Objects 103

Raycasting Quad Splatting -~ Triangle Splatting

32 FPS 76 FPS , 2.9 MPts , 444 MTri/s 95 FPS, 2.9 MPts , 276 MTri/s

Figure 4.22 Raycasting vs Splatting (1): left: the proposed RLE method; middle: quad splatting; right:
triangle splatting

Raycasting‘ﬁ e ==*Quad Splattifig 7 o Triangle Splatting

Figure 4.23 Raycasting vs Splatting (2): left: the proposed RLE method; middle: quad splatting; right:

triangle splatting

For a comprehensive analysis, the proposed method is further compared to common splatting. The
comparison was carried out in terms of speed, memory consumption and quality. To achieve fast
splatting, each voxel of the voxel data was stored as one splat with position data (three float
values for x, y and z) and RGB color data. Equal to the voxel data, also the splat data contains
multiple levels of details. For the data-set that is used in this test, 12 Million splats are used for
the highest level of detail. The complete data-set including all levels of details contains 16.3
Million splats, which requires 261.44 MB when stored as basic splats. The original RLE voxel
data containing the equal number of voxels requires only 49.5 MB.

The array of splats is stored on the GPU as vertex buffer object (VBO) for maximal performance.
To visualize the splats, the vertex data is sent to OpenGL as vertex array of GL_POINTS, and
then converted into triangles or quads by the Geometry Shader. A quad consists of two triangles
in this case. The hardware for this test was a NVIDIA GTX 580M GPU with an Intel Core i7
CPU and 16GB of RAM.

For rendering a single copy of the 1024 x 1024 X 1024 voxel data-set, 32 fps are achieved by
the proposed method, 76 fps for quad based splatting and 95 fps for triangle based splatting. The
results are shown in Fig. 4.22. For the two splatting based methods, 2.9 Million splats were
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required to visualize the scene. For visualizing 1600 (40 times 40) instances of the same data-set,
32 fps are achieved for the proposed method, 5.5 fps for quad based splatting and 6.8 fps for
triangle based splatting. The results are shown in Fig. 4.23. For the two splatting based methods,

48 Million splats were required to visualize the scene.

As a result, it turns out that splatting suits well for visualizing single objects, where it is up to
three times as fast as the proposed raycasting approach. However, it is much slower for very
complex scenes. The proposed method achieves 4.7 times as fast as splatting for the test scene
consisting of 1600 instances. The proposed method, therefore, scales better for visualizing

complex scenes than conventional splatting.

Rendering Quality

The rendering speed is evaluated in regard to the image quality by measuring the performance for
different quality settings. No anti-aliasing, 2 X 1 anti-aliasing and 2 X 2 anti-aliasing (Fig. 4.18)

were compared.

If the speed for the no anti-aliasing is 100%, 2 X 1 AA and 2 X 2 AA achieve 104% and
approximately 80%, respectively. The increase in speed for 2 X 1 AA might be caused by better
coalescence for reads from GPU memory. On GPU, coalescent memory reads are very important
for high performance. Non-coalescent reads are significantly slower. As a conclusion, half the
GPU’s processing units must be idle in case of the no AA configuration, because 2 X 1 AA
requires two times as many floating-point operations as no AA. As a result of this experiment, the
main limiting factor of the proposed algorithm is the memory-bandwidth due to the following
reasons. Every rendering algorithm’s speed is either limited by the speed of the processing unit
(here the GPU) or the speed of the memory. Here, the speed of the memory is the limitation. The
memory bandwidth was reduced by employing multiple culling algorithms, but it still remains the

limiting factor. To improve that, additional compression schemes to reduce the memory
bandwidth might be helpful.
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Figure 4.24 Quality: To show the ability to render at high quality, a complex test scene with many fine
details was created and rendered at 512 X 348 pixel with 2 X 2 AA as well as no AA for a comparison.

Note that 2 X 2 AA successfully removes aliasing artifacts for distant pixels.

Mfiangle Splatting

Figure 4.25 Raycasting vs Splatting (3): render quality for geometry close to the camera; left: the

proposed RLE method; middle: quad based splatting; right: triangle splatting

As shown in Fig. 4.24, the proposed algorithm is able to achieve high quality renderings for a
scene with many fine structures. To facilitate the comparison, the result was rendered using 2 X 2
AA in the left half and no AA in the right half.

Further analysis of the quality was carried out by comparing the previously introduced quad and
triangle based splatting to the proposed method. As shown in Fig. 4.25, triangle based splats
(right) achieve the lowest quality, as they are unable to approximate geometry close to the camera
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in a proper manner; quad based splats (center) achieve a better approximation, but their
silhouettes and other geometry close to the camera appear blocky and not well defined. The
proposed methods result (left in Fig. 4.25) achieves the best quality: namely, as silhouettes are
smooth and yet opaque. Furthermore, geometry enclosed by silhouettes close to the camera is
smooth and looks similar to the result of texture filtering, which is commonly used in the

visualization of textured 3D models.

Finally the Richtyer-Meshkov data set was visualized, with a resolution of 2048 X 1920 x 2048.
The size of the RLE compressed data of the surface at iso-value 60 is 198 MB including mip-
maps. This results in a compression factor of 5:1 in regard to the binary volume data. As this
particular data set is very large, no color or shading information was stored along with the voxel
data. The surface normal vectors were computed on-the-fly from the screen-space for the
visualization, as well as approximated ambient occlusions. For the visualization speed at a
resolution of 1024 X 768, interactive frame-rates were achieved: 15 fps for rendering a single
instance of the data-set Fig. 4.21 and 10 fps for rendering the data-set repeatedly as shown in Fig.
4.26. It is possible to render the complete Richtmyer-Meshkov dataset more than 100 times. For
the shading, a combination of screen-space-ambient-occlusion and screen-space normal was

utilized.

Figure 4.26 Richtmyer-Meshkov dataset
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Comparison to Related Methods and Discussion

The proposed method was compared to existing methods in terms of rendering speed, memory

consumption and visual precision.

4.6.5.1 Memory Consumption

The proposed method is compared to a basic triangle mesh in Table 4.2 for multiple scenes. The
results shows that a triangle consumes about 9 times as much memory as a single voxel.
Comparing the proposed method to GigaVoxels [37] (Table 4.3) shows that GigaVoxels uses
about 4.8 times as much memory as the proposed method, considering 32 bit color depth for each
voxel. Comparing the proposed method to QSplat [5] (Fig. 4.27) shows that Qsplat consumes 6 -
9 bytes per splat, which is similar to the proposed method with 4.7 — 6.8 bytes per voxel. For the
file-size of the Buddha and the Dragon model, the proposed method’s data structure is 1.64 -
1.75x as large as the data structure of Qsplat. The number of splats stored inside both Qsplat
models remains unknown for the Buddha and the Dragon model though. The QSplat data values
for the data size per splat for the comparison are given by the original QSplat paper. Comparing
the proposed method to Sparse Voxel Octree Raycasting method by Jon Olick [15] (Fig. 4.27)
shows that the run-time structure for octree raycasting uses ~10x as much memory per voxel
compared to the proposed method. Comparing the proposed method to GPU Triangle Raycasting,
Karras et al, [42] (Fig. 4.27) shows that one triangle uses about 9 times as much memory as one
voxel in terms of position data. However, additional memory is used by the acceleration structure

for ray-tracing.

4.6.5.2 Computational Speed

For the computational speed, the test system was an Intel Core i7-2670QM CPU (2.2Ghz) with
NVIDIA GeForce GTX 580M GPU and 16 GB of RAM.

The proposed method is compared to a basic triangle rasterization in Fig. 4.28 on the test system.
The result shows that the proposed method is faster in all cases. The result is further visualized as
graph in Fig. 4.29, where an increased speed for higher distance can be observed. The proposed
method further scales well for rendering complex scenes, as demonstrated in Fig. 4.30. While
conventional rasterization achieves only 1 fps for visualizing the Imrod model 6 times, the

proposed method achieves 30 fps for visualizing it 1600 times.

To compare this thesis’ method in terms of speed and to the two voxel octree raycasting methods
GigaVoxels by Crassin [37] and Sparse Voxel Octree raycasting by Olick [15], an exemplary
sparse voxel octree raycasting method was implemented for this thesis. In Fig. 4.31, the
exemplary sparse voxel octree raycasting method is compared to GigaVoxels for the San Miguel
Scene. The performance values are the original ones stated in Crassin‘s PH.D thesis, page 114
[43]. The performance of GigaVoxels was measured on a NVIDIA GTX 480 graphics card, which

is significantly faster than the test system used here:
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e NVIDIA GTX480: (used for GigaVoxels)

e Floating point operations per second: 1.3TFlop/s, RAM memory bandwidth: 177GB/s®,
e 3DMark Score: 5810°, CL Raytrace Benchmark® Score: 136323 points

e NVIDIA GTX580M: (the test system used here)

¢ Floating point operations per second: 0.95TFlops, RAM memory bandwidth 96GB/s®,
e 3DMark Score: 3450, CL Raytrace Benchmark Score: 61154 points

The result shows that the exemplary sparse voxel octree raycasting method is at least as fast as the
GigaVoxels, considering that the hardware used here is significantly slower in memory bandwidth
and floating point computation speed than the hardware used to measure the performance of
GigaVoxels. In Fig. 4.31, the exemplary sparse voxel octree raycasting method and GigaVoxels
are further compared to the proposed method. The result shows that the proposed method is

significantly slower than both methods for low screen resolutions and low voxel resolutions.

In Fig. 4.32, the exemplary sparse voxel octree raycasting method is compared to the sparse voxel
octree raycasting method of Olick and to the proposed method. It turns out that the three
compared methods achieve the same speed in this test using the Imrod model. The hardware for
the exemplary sparse voxel octree raycasting method and the proposed method were this thesis’
test system. The hardware used by Olick was an NVIDIA GTX 280 graphics card, which provides

a similar performance as follows:

e NVIDIA GTX580M (test system used here):

¢ Floating point operations per second: 0.95 TFlops, RAM memory bandwidth 96GB/s

e NVIDIA GTX280 (hardware used by Olick):

¢ Floating point operations per second: 0.93 TFlops, RAM memory bandwidth 142GB/s*

In Fig. 4.33, the inner area of the San Miguel scene is compared for the exemplary sparse voxel
octree raycasting method, the proposed method and to triangle raycasting for a high screen
resolution, 2048 X 768 pixel, The exemplary sparse voxel octree raycasting method is fastest for
this scene (65 fps), whereas the proposed method is slightly slower (50 fps), and triangle

raycasting comes last (26 fps).

In Fig. 4.34, the proposed method is compared to triangle raycasting and the exemplary sparse

voxel octree raycasting method for the Imrod model. Here, all three methods are about the same

5 http://en.wikipedia.org/wiki/GeForce_400_Series

%' http://community.futuremark.com/hardware/gpu/NVIDIA+GeForce+GTX+480/review

62 http://clbenchmark.com

63 http://en.wikipedia.org/wiki/GeForce_500_Series

64 http://www.nvidia.com/docs/I0/55506/GeForce_ GTX_200_GPU_Technical_Brief.pdf , page 11
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speed, where the proposed method and the exemplary sparse voxel octree raycasting method are

slightly faster (46 fps) than the triangle raycasting method (42 fps).

In Fig. 4.35, the proposed method is compared to triangle raycasting and the exemplary sparse
voxel octree raycasting method for the Imrod model with a different camera setting. All three

method achieve about the same performance.

In Fig. 4.36, the proposed method is compared to the exemplary sparse voxel octree raycasting
method for a very complex voxel scene containing multiple instances of the same tree dataset
with 12.6 million voxels. For this scene, which is the most complex of all tested scenes due to
numerous fine branches of the trees in the scene, the proposed method achieves 20 fps, which is
1.4 times as fast as the exemplary sparse voxel octree raycasting method with 14 fps. Therefore,

the proposed method would also be significantly faster than GigaVoxels for this complex scene.

In Fig. 4.37, the proposed method is compared to QSplat in multiple configurations. The result
shows that the proposed method outperforms Qsplat for all test scenes by factor 1 - 3.7 with an

average of 2.5.

4.6.5.3 Visual Precision
All related methods are compared to the proposed method for visual precision as follows.

In Fig. 4.38, triangle based rasterization is compared to the proposed method for multiple camera
configurations ranging from near to far. While there is a significantly higher precision for triangle
based rasterization for close views, when the size of a voxel on the screen is greater one, the
results are similar as far as one voxel is about the size of one pixel. Due to multiple anti-aliasing,

triangle based rasterization achieves higher precision in all cases, though.

In Fig. 4.39, GigaVoxels is compared to the proposed method. GigaVoxels achieves higher
quality for geometry close to the camera than the proposed method by using tri-linear texture
filtering. For distant views, similar results are obtained. In Fig. 4.39, the upper dragon scene is
sampled at 2048 x 2048 x 2048 voxel and the lower dragon scene at 1024 x 1024 x 1024.

In Fig. 4.40, the Imrod model is compared to triangle raycasting for multiple views. While
triangle raycasting achieves a higher precision for close views, similar results are obtained for far
views, where the size of one voxel is equal to one pixel. For the test, the screen resolution was
2048 x 768 pixel. For the triangle model, one million triangles were used. The voxel model was
sampled at 1024 X 2048 X 1024 voxel and represented by 6.8 million voxel.

In Fig. 4.41, QSplat is compared to the proposed method for visualizing the entire Lucy model. In
Fig. 4.42, QSplat is compared to the proposed method for visualizing close-up views of the
Buddha model. For distant views as in Fig. 4.41, similar results are obtained for both methods.
The proposed method renders more accurate than Qsplat for close views in Fig. 4.42. Further,

smoothing is supported by the proposed method, which is not supported by QSplat.

In Fig. 4.43, sparse voxel octree raycasting by Olick is compared to the proposed method. Octree
raycasting visualizes each voxel as cube, which is equal to the proposed method. In addition, the

proposed method supports smoothing. Shading is not considered for the comparison.
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4.6.5.4 Summary
This sub-section summarizes the comparison results presented in Sections 4.6.5.1 to 4.6.5.3.

In Fig. 4.44, the memory consumption is summarized for all related methods in relation to the
proposed method. The proposed methods factor is set to one. It turns out that none of the related
methods achieves a lower average memory consumption than the proposed method. Only QSplat
is comparable to the proposed method in terms of memory consumption. GigaVoxels requires 4.8
times as much as the memory of the proposed method, and the other remaining methods more

than nine times as much as the memory of the proposed method.

In Fig. 4.45 the computation speed is summarized for all related methods in relation to the
proposed method. As before, the proposed methods’ factor is set to one. The results show that
none of the related methods achieves a higher average performance for detailed scenes visualized
at a high screen resolution. Similar performance is achieved for triangle based raycasting, Sparse
Voxel Octree raycasting and GigaVoxels. QSplat achieves in average 0.38 times the performance,

and triangle based rasterization achieves only 1/3000" the performance for complex scenes.

In Fig. 4.46 the computation visual precision is summarized for all methods related to the
proposed method. As before, the proposed method is set as reference. The results show that the
proposed method achieves a higher precision than QSplat and a smoother result than Sparse
Voxel Octree raycasting, but that the result is not as good as GigaVoxels and triangle based
methods. The difference between these methods is significant for geometries close to the camera,
where one voxel is larger than one pixel. In case that the camera is far away and one voxel is

about the size of one pixel, the results are more similar.

As a summary it turns out that the proposed method achieves the lowest memory consumption
among the compared related methods, the highest rendering speed for visualizing complex
geometry at high screen resolutions although the proposed method is tied with some other
methods. Comprehensive evaluation for the memory consumption and computation speed

indicates that the proposed method is best.
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Table 4.2 Memory consumption (1): Triangles compared to the proposed method (voxel)

Scene Triangles Proposed Methaod, Voxel, No Color

Count (Million) | Size (MB) | Bytes per Triangle | Count (Million) | Size (MB) | Bytes per Voxel | Resolution (in Voxel)
Imrod 18 335 18.5 6.8 14.1 2.1 1024x2048x1024
Dragon 0.871 17.8 20.4 2:9 745 351 1024x1024x1024
Buddha i 20.1 20.1 8.8 16.5 1.96 1024x2048x1024

Imrod, Voxel vs Triangles

Dragon, Voxel vs Triangles

Buddha, Voxel vs Triangles

Table 4.3 Memory consumption (2): GigaVoxels [37] compared to the proposed method for the Sponza

scene. The GigaVoxels screenshot is with courtesy of Cyril Crassin

Sponza Scene |GigaVoxels, Voxel, 32 Bit Color |Proposed Method, Voxel, 32 Bit Color Original, Triangles
Size 70 MB 145 MB 7 MB Triangles, 130MB Textures
Resolution 512x512x512 Voxel 512x512x512 Voxel 262.000 Triangles

Scene: Budda
Size: 6.8 MB
? Splats

? Byte / Splat

Scene: St.Matthew
Size: 761 MB

127 Million Splats
6 Byte / Splat

Scene: David
Size: 27 MB

4.2 Million Splats
6.4 Byte / Splat

Scene: Dragon
Size: 8.3 MB

? Splats

? Byte / Splat

Proposed Method, 16 Bit Color Data per Splat

Scene: Budda Scene: Dragon \ Scene: Imrod Scene: Lucy
Size: 11.9 MB Size: 13.6 MB ,'\“‘g\ 171 . Size: 32 MB Size: 25.2 MB
2.4 Million Voxel 3 Million Voxel | Y i ¥ i\fy 6.8 Million Voxel 5.1 Million Voxel
6.8 Byte / Voxel 6.2 Byte / Voxel ."N | 4.7 Byte / Voxel 5.19 Byte / Voxel

Triangle Raycasting

Scene: Imrod

Size: 335 MB + ? MB BVH

1 18 Million Triangles

(18.67 Byte + ? Byte) / Triangle

Scene: Imrod
Size: ? MB

? Voxel

52 Byte / Voxel

Figure 4.27 Memory consumption (3): QSplat, Sparse Voxel Octree and Triangle raycasting compared to
the proposed method.
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Imrod Scene
6 Million Triangles
13 FPS

6 Million Triangles
13 FPS

6 Million Triangles
13 FPS

6 Million Triangles
13 FPS

Imrod Scene

Resolution: 1024x2048x1024 voxel
6.8 Million Voxels

67 FPS

| 6.8 Million Voxels

38 FPS

. 6.8 Million Voxels

52 FPS

. 6.8 Million Voxels

91 FPS

Figure 4.28 Speed comparison (1): Triangle rasterization compared to the proposed method for multiple

camera configurations.

fps
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Figure 4.29 Speed comparison (2): Triangle rasterization compared to the proposed method for multiple

camera configurations.



Chapter 4 Static Objects 113

10 instances, 60M triangles , 1 FPS 40x40 = 1600 instances, 10G voxels, 30 FPS

Figure 4.30 Speed comparison (3): Triangle rasterization compared to the proposed method for a complex

scene with multiple Imrod models.

San Miguel Scene, 512x512x512, rendered at 512x512, GTX 580M, Voxel Octree Raycasting

9 T T

@ X -

San Miguel Scene, 512x512x512, rendered at 512x512, GTX 580M, proposed method

Figure 4.31 Speed comparison (4): GigaVoxel and this thesis’ Sparse Voxel Octree Raycasting (that was
implemented for comparison purposes) is compared to the proposed method for multiple camera

configurations. The GigaVoxels [43] screenshots are with courtesy of Cyril Crassin
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Sparse Voxel Octree Raycasting, General Sparse Voxel Octree Raycasting, Proposed method

Jon Olick This thesis version

Screen Resolution: 1024x768 Screen resolution 1024x768 Screen resolution 1024x768
Speed: 60 fps Speed: 60 fps Speed: 60 fps

Hardware: NVIDIA GTX280 Hardware: NVIDIA GTX580M Hardware: NVIDIA GTX580M

Figure 4.32 Speed comparison (5): Sparse Voxel Octree Raycasting of Jon Olick is compared to this
thesis’ Sparse Voxel Octree Raycasting method and to the proposed method. The Sparse Voxel Octree
Raycasting screenshot (left) is with courtesy of Jon Olick.

General Sparse Voxel Octree Raycasting
Resolution : 512x512x512 Voxel

Screen Resolution : 2048x768 Pixel

0.9 Million Voxel

Speed : 65 fps

™ Proposed Method

Resolution : 512x512x512 Voxel

~ Screen Resolution : 2048x768 Pixel
0.9 Million Voxel

Speed : 50 fps

| Triangle Raycasting

1 Million Triangles

| Screen Resolution : 2048x768 Pixel
Speed : 26 fps

Figure 4.33 Speed comparison (6): this thesis” Sparse Voxel Octree and triangle raycasting are compared
to the proposed method.
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General Sparse Voxel Octree Raycasting
Resolution : 1024x2048x1024 Voxel
Screen Resolution : 2048x768 Pixel

6.8 Million Voxels

Speed : 46 fps

Proposed Method

Resolution : 1024x2048x1024 Voxel
Screen Resolution : 2048x768 Pixel
6.8 Million Voxels

Speed : 46 fps

Triangle Raycasting

1 Million Triangles

Screen Resolution : 2048x768 Pixel
Speed : 42 fps

Figure 4.34 Speed comparison (7): this thesis” Sparse Voxel Octree is compared to the proposed method

and to triangle raycasting.
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General Sparse Voxel Octree Raycasting
Resolution : 1024x2048x1024 Voxel
Screen Resolution ;: 2048x768 Pixel

6.8 Million Voxels

Speed : 29 fps

\
ad
8
-
-
-
-
.

Proposed Method

Resolution : 1024x2048x1024 Voxel
Screen Resolution : 2048x768 Pixel
6.8 Million Voxels

Speed : 31 fps

Triangle Raycasting

1 Million Triangles

Screen Resolution : 2048x768 Pixel
Speed : 32 fps

Figure 4.35 Speed comparison (8): this thesis’ Sparse Voxel Octree is compared to the proposed method
and to triangle raycasting

General Sparse Voxel Octree Raycasting
% Resolution : 1024x1024x1024 Voxel

£ Screen Resolution : 2048x768 Pixel
12.6 Million Voxels

Speed : 14 fps

B Proposed Method

& Resolution : 1024x1024x1024 Voxel
Screen Resolution : 2048x768 Pixel
12.6 Million Voxels

§ Speed : 20 fps

Figure 4.36 Speed comparison (9): this thesis’ Sparse Voxel Octree is compared to the proposed method.
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Proposed
Method

~ Lucy
37 FPS

= Happy Buddha
52 FPS

" Happy Buddha
48 FPS

Close View

Per Pixel accurate
+ Anti-Aliasing

Medium distance

Per Pixel accurate
+ Anti-Aliasing

Far distanct

Per Pixel accurate
+ Anti-Aliasing

Imrod scene,
6M triangles

Proposed Method

Imrod scene, voxelized from 18M triangles
1024x2048%x1024 voxel resolution
1024x768 screen resolution

Close View
Projected size of 1 voxel > 1 pixel

Not pixel accurate

| Medium distance

Projected size < 1024,
therefore pixel accurate

| Far distant

Projected size < 1024,
therefore pixel accurate

Figure 4.38 Visual Precision (1): the proposed method is compared to triangle rasterization.
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Figure 4.39 Visual Precision (2): the proposed method is compared to GigaVoxels. The GigaVoxels

screenshots is with courtesy of Cyril Crassin

Triangle Raycasting
Close view
Screen resolution 2048x768

Per pixel accurate, no anti-aliasing

Proposed Method

Close View

Screen resolution 2048x768
Projected size of 1 voxel > 1 pixel
Not pixel accurate

Triangle Raycasting
Far view

Proposed Method
Far view

Per pixel accurate,
no anti-aliasing

Per pixel accurate,
' no anti-aliasing

Figure 4.40 Visual Precision (3): the proposed method is compared to triangle raycasting.
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Proposed Method QSplat

Figure 4.41 Visual Precision (4): the proposed method is compared to QSplat.
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Proposed Method

The yellow region is
being compared

. QSplat

Sparse Voxel Octree Raycasting, Jon Olick Proposed method, 2x1 AA
Screen resolution 1024x768 Screen resolution 1024x768

Figure 4.43 Visual Precision (6): the proposed method is compared to Sparse Voxel Octree Raycasting.
The Sparse Voxel Octree Raycasting screenshot (left) is with courtesy of Jon Olick.
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Proposed method : 1x

) | | Worse (higher) |

1/10 x 1x GigaVoxels 10x
~4.8x
Qsplat Triangles
~1x ~9x
Triangle
Raytracing
>9x

Sparse Voxel

Octree
~10x
Figure 4.44 Summary of memory consumption per element.
Proposed method
) | Worse I I N
0.1 x 1x 10x
Qsplat
Triangle 0.25x - 1x
Rasterization Avg.0.38 Triangl
1/3000 for complex scenes riangle
Raytracing
1.0x
GigaVoxels,

Sparse Voxel Octree:
0.7x - 1.28x as fast
Avg 1.0x

Figure 4.45 Summary of computation speed for high screen resolutions (2048x768).
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Near Geometry ( projected voxel size > 1 pixel ) : Visible Differences

Proposed method

P | Worse | | N
Qsplat Sparse Voxel GigaVoxels Triangle
Octree (SVO) Rasterization
Triangle
Raytracing

Far Geometry ( projected voxel, splat or triangle size <=1 pixel ) : Similar Results

Proposed method

| Worse I |

»
—
—

v

I Triangle
Rasterization
GigaVoxels

SVO _ .
Triangle

Raytracing
Qsplat

Figure 4.46 Summary (3): visual precision.

4.7 Conclusion

This chapter has proposed a raycasting based method for the fast visualization of complex RLE
compressed voxel data scenes. The proposed method improves the original voxel forward
projection algorithm in several ways so that complex scenes are efficiently visualized and so that

low memory consumption is achieved.

The experimental results and discussion are summarized as follows.

e Memory Consumption: The low memory consumption is achieved using the proposed 16

bit volume data run-length-encoding with 10 bit used for voxel skipping and 6 bit used
for counting stored voxels. As a result of applying the proposed method and related
methods to multiple data-sets (triangle and voxel data) in the experimental results section,
the following results are obtained:

o The proposed method and QSplat consumes least memory.

o Gigavoxels, triangles, triangle raytracing and sparse voxel octrees consume more

memories.



Chapter 4 Static Objects 123

Rendering speed: The proposed method and related methods are applied to multiple data

sets including voxelized polygon data and procedurally generated voxel data. The

following results are obtained:

o The proposed method, triangle raytracing, GigaVoxels, and sparse voxel octree are
fastest.

o QSplat and triangle rasterization are slower.

Comprehensive Evaluation: The proposed method is tied with QSplat in terms of low
memory consumption, and is tied with triangle raycasting, GigaVoxels and sparse voxel
octree in terms of rendering speed. Comprehensive evaluation for these results indicate
that the proposed method is best. This comprehensive evaluation result indicates that the

goals of this chapter are achieved.

The proposed method uses a special filter method to smooth voxel edges on the screen. The filter
method works well for specified distance range of voxels to the camera. For voxels that a very
close to the camera, a large area would be required to be smoothed out, but this is not done due to
performance reasons.

Future work might include developing better ways to achieve smooth surfaces of the visualized
voxel structure on the screen, without having impact on rendering speed or memory consumption.
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Chapter 5. Skeletal Animation

5.1

5.1.1

5.1.2

5.2

Goals

This chapter proposes novel ways to improve existing skinned skeletal animation methods.

Skinned skeletal animation methods can be utilized to bind a skeleton to any arbitrary triangular
mesh for achieving any kinds of complex deformations. Commonly, skinned skeletal animation is
used for animating life-forms in general, where most of them are human characters in video

games or cinematic productions.

Spline Skinning

e Non-collapsing geometry: The proposed skinned skeletal animation approach should

avoid collapsing geometry, which could occur in joints that are bent by large angles in

case of conventional matrix skinning.

e Faster computation and flexibility: Higher performance and more flexibility compared to
DQS should be achieved.

e Small number of control joints for a spine: As existing methods require many control

joints to represent a spine or facial animation, the proposed approach should significantly

reduce the number of necessary joints without sacrificing the quality of the deformation.

Deformation Styles
e Reusability: Different from existing methods, the proposed approach should allow the
simple and abstract design of deformation styles for re-usable deformation behaviors. The
generation of muscle like deformations or the design of cloth wrinkles should be allowed,

for the instant application to any number of target characters simultaneously.

For brevity, in the following discussion the proposed skeletal animation module is referred to as

animation system.

Related Work

Over time, many methods have appeared to achieve the animation of characters, where the most
important methods can be divided into Free-Form-Deformation (FFD) [44], Skeletal Subspace
Deformation (SSD) [18], shape blending and spline aligned deformations [45]. They form a
foundation for many subsequent research approaches and have reappeared in countless variants
and combinations since their initial invention. In order to improve the deformation quality and

realism for skeletal animations, various methods have been suggested.
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Spline Skinning

SSD, which is the earliest method, is still the most popular method for skinned skeletal animation
today. However, due to deformation artifacts due to large bend angles, many methods have been
proposed to improve that. Methods that directly improve SSD are QS [19] and DQS [20]. They
change the interpolation domain from matrices to quaternions or even dual quaternions (DQS).
This cannot prevent all deformation artifacts, but successfully avoids effects as collapsing
geometry by preserving a high computational speed, while their computational speed is still not as
high as SSD. In case of quaternion skinning, about 78% of the speed of SSD is achieved, and in
case of DQS, 72% the speed of SSD is achieved, where details about their performances are
provided by [19] and [20].

A different and more flexible approach is to use skinned spline aligned deformations and apply
them to skinned skeletal animation. Two methods to achieve these are [46] (an earlier version of
the proposed method that calculates the spline on a per vertex basis rather than pre-computing the
spline prior to the per vertex deformation step) and [47]. Concerning Yang et. al’s method [47],
focuses on the non-real-time case, as their application is a plugin for the commercial software
Maya, while [46] focuses on the application in real-time systems by extensive usage of the GPU.
In [47], which was developed independently from the method proposed in this chapter at exactly
the same time, high performance and the use in real-time applications was not intended. Therefore,

performance benchmarks were not provided.

Another related approach in this context is Cornea et al’s method [48], which introduced curve
skeletons are introduced and discussed in general. Their method focuses on automatically
computing of curved skeletons from models rather than utilizing manually created skeletons, for

skeletal animations.

A method that extends FFD is a sweep-based FFD [49], which was independently developed the
same time from the method proposed in this chapter and appeared in the same conference as Yang
et al’s skinned skeletal animation approach [46]. The sweep based FFD provides the ability to
efficiently model radial deformations by allowing the user to edit cross-sections along spline-
curves. Their method however, does not provide skinning; therefore it is not possible to have
vertices influenced by multiple spline curves. Furthermore, since they do not focus on real-time
applications, they do not provide any performance benchmarks for the deformation time. The
proposed system utilizes two variants of sweep-based FFDs to apply the deformation styles to the

geometry, as detailed in later sections.

Another sweep-based algorithm is Hyun et al’s method [50], which uses the sweep-based
deformation to create skinned skeletal animation. The algorithm allows a limited creation of
customized deformations, as the user can define virtual muscles, which are taken into account
during the animation. Their method achieves good deformation quality, but they achieve barely
real-time performance due to complex computations even for a single character. It is, therefore,

not suited well for real-time video-game applications.

To provide more realistic deformations, advanced methods such as [51], [52], [53], and [54] were

developed. They allow the adjustment of the material stiffness and take physical constraints into
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account, which directly affects the deformation. Other methods, such as the volumetric graph
laplacian [55] construct an inner graph to preserve the mesh's inner volume while deforming. All
of these methods can provide a high quality deformation, but they cannot provide the same high

performance as SSD due to their complexity.

Deformation Styles

A method that allows the re-use of deformations is Sumner et al’s method [56], by which the
animation of one mesh may drive the deformation of another, similar mesh. Different from this
chapters’ goals, their method targets at reusing complete deformations, not deformation's
behaviors. They do not allow the creation of an abstract deformation behavior independent of the

underlying mesh.

Example based methods allow the pose-dependent modification of animations. Initially pose-
space-deformation (PSD) [57] was developed and then was advanced by [58] and [59]. PSD
basically allows an artist to individualize particular poses, where intermediate poses are calculated
by interpolation. In this case, pose-dependent deformations can also be modeled by the artist, but
in a different and more complex way to the proposed method. Instead of directly displaying
certain vertices in a certain pose, more abstract design, which could cover all poses is desired.
However, PSD and related methods achieve that, because they are tightly bound to the mesh they

created.

Cloth simulations were developed to provide realistic cloth appearances. A comprehensive
overview can be found in [4]. Conventional cloth simulations include [60], [61], and [62], which
allow the design of surface details for the animation. However, cloth deformations cannot achieve
the goal of re-usable deformations for skinned skeletal animations designed by an artist.
Furthermore, all the three methods apply surface details in direction to the surface normal and
depend on the local mesh deformation rather than utilization of skeleton’s pose; therefore, their

deformation is entirely different from the proposed method.

Different from PSD, algorithm of [62] generates pose-dependent wrinkles procedurally for
producing a cloth-like appearance. Since the method is limited to automatic generated wrinkle

patterns, they cannot handle arbitrary custom artist designed deformation styles as intended here.

Proposed Method

Fig. 5.1 shows the two proposed methods: spline skinning (Section 5.5) and deformation styles

(section 5.6), where deformation styles is built on top of spline-skinning.

Spline Skinning

Spline skinning evolves as a combination of spline aligned deformations [45] (SAD) and
conventional SSD. While SSD uses vertex weights to blend matrices, spline skinning uses the

weights to blend the results of multiple splines aligned deformations.
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As shown in Fig. 5.1, SAD consists of two parts to animate a vertex. First, the transformation
from world-space into spline-space for the rest pose and second, the transformation from spline-
space into the world-space for the animated pose. The proposed spline skinning uses three splines
to drive the deformation of a vertex, where the influence of each spline is defined by the skinning

weight stored along with the vertex.

SAD provides high-quality bend and twist deformations without exposing unwanted artifacts,
which could occur in case of SSD, as shown in Fig. 5.2. Another advantage is their fast and stable
computation, which is an important property for real-time applications. Concerning the spline
function, a special polynomial based spline with variable exponent depends on only three control-

points for highest performance.

Since splines may further help to simplify complex skeletal animations, such as a spine or facial
animations, it to replace multiple joints of common skeletal animation systems by one single
spline. Regarding speed, the computation per vertex can be reduced by SSD. Spline skinning can

therefore be computed faster than QS and DQS, which is used in the CryEngine3.

Deformation Styles

To achieve reusable and pose dependent deformation behaviors that can be designed in an abstract
manner, deformation styles are proposed. As shown in Fig. 5.1, bottom, deformation styles are
based on spline skinning. They are integrated into the spline skinning’s spline aligned

deformation module.

Deformation styles are based on two sweep-based FFD variants, which are attached to each joint.
Deformation styles do not require any knowledge about the underlying geometry, which they are

applied to, as opposed to PSD.

The first two FFD variants are based on a high-resolution, radial FFD grid, which is wrapped
around the spline. They allow to achieve high resolution concentric deformation effects. The
effects include metal- and cloth-like deformations or even muscle bulges. The radial FFD grid is
driven by three scale textures, which are summed up to a final scale texture using a scale factor
(weight) for each texture. The weight depends on the angles of the spline's control points. The

three textures are utilized for frontal, lateral and radial scaling.

The second FFD variant is a rectangular scale envelope that is supposed to allow a simple
definition of more general scalings. The artist therefore draws three outlining curves for the
frontal, lateral and radial direction. Goals of the second variant include the design of folds to

prevent self-intersections such as the elbow or the modeling of major lateral bulges for soft-bodies.
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Approach 1 : Spline Skinning (Skeletal animation)

Spline Skinning o
Q
Input Spline Aligned Defomation 1 [ output 2
Vertex _>§ Spline Aligned Defomation 2 |+ Weslarr:ed 7| Vvertex N ©
Spline Aligned Defomation 3 [ ;a
Spline Alighed Deformation 1..3
World-Space Spline Space p
to > to Qace
Spline Space World-Space Qec’
Rest Pose Animated Pose E
[%2)
Approach 2 : Deformation Styles (Surface details)
Spline Aligned Deformation 1..3
World-Space Deformation Spline Space
to > Styles 5 to
Spline Space . Rectangular World-Space
Rest Pose «  Radial Animated Pose ‘

Figure 5.1 Proposed spline skinning and deformation styles. Top: spline skinning, middle: spline aligned

deformations, bottom: deformation styles.

unwanted
artifact

Lattice FFD Matrix Skinning Spline Deform

Figure 5.2 Bend and Twist deformations: left: FFD, middle: SSD, right: spline aligned deformation.
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Splines

Fundamentals

In order to achieve spline-aligned deformation, finding a suitable spline-function is required. Arc-
spline and the polynomial Bézier-spline are candidates, because both can be computed very fast,
which is important for the use of spline based deformation in real-time applications. In order to

provide highest speed, three control points are required.

However, both functions do not naturally allow a modification of the curve stiffness without
adding another control point. The proposed approach lets the second control point basically
represent a joint's rotation center, and hence, additional control points complicate the computation.
To achieve a simple and easy handling, three control points p; ;23 are chosen. The basic Bézier
spline function f}, is used to create a new spline function f, , which provides an additional
parameter a for a continuous variable adjustment of the spline's stiffness. In Fig. 5.3, a
comparison among the spline functions is shown, together with the function of the additional

parameter a.
The variable x defines the position on the spline:

vx € [0,1],V a > 2,

A, = p2—pu (5.1)
Az = p3—p2
Conventional Bezier curve in R3, f;: R - R3:
fh(x) = (1—x)2-p1+(2-x-(1—x))-p2 + x2 - ps, (5.9)
fox) = 2-(x—-1Dp +Q2—-4x)-p; +2-xps. '
The modified Bezier curve in R3, f,,: R - R3:
X = +(1-1-x)% A, +x%- Ay,
fm (%) p1+( ( )?) - 4y, 23 (5.3)

a- (1 - .x)a_1 ° AIZ + a - xa_1 * A23.

fm ()
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P2 P3 P2 P3 P2 P3
L 2 L ] L
a=1
Pl P1 Pi
Arc spline Bezier Curve The Proposed Spline
a=1 a=2 a=3 a=4

Figure 5.3 Spline functions: In the upper row, the short-listed spline functions are compared. The lower

row shows the ability of the spline to adjust the stiffness by parameter a.
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Spline Aligned Deformation

In order to apply the proposed spline with variable stiffness for geometric deformations, it is
necessary to define a local coordinate-system around it, the so-called Frenet-frame, as shown in
Fig. 5.4. A complete orthonormal basis b can be computed for each position of the spline, where

the origin by, normal by, tangent b and bi-normal by are defined as follows:

br(x) = fm(x),

by = Ay X433,

bg(x) = by Xbr(x),

bo(x) = fm(x);

B ={[by|bg|br|byl; (5.4)

bN.x bB.x bT.x bo.x

B = by.y bp.y br.y bp.y )
bN.Z bB.Z bT.Z bo.Z
0 0 0 1

The origin of the coordinate frame is simply the spline function f;, itself. Then, the tangent by is
equal to the spline's derivative f,,. The normal by can be pre-calculated as it is perpendicular to
the three control points p;,; and finally the bi-normal by can be computed as cross-product of the
normal by and the tangent vector by. The 4x4 transformation matrix B is built by arranging the

four computed vectors as column vectors.

P3

Figure 5.4 The spline coordinate system: left: the spline function in violet together with the spline’s
coordinate system, where the spline’s tangent is indicated in blue, the normal in red, the bi-normal in green

and the origin of each coordinate system in yellow; right: an example deformation.

Spline Binding

Prior to the deformation, as shown in Fig. 5.5 all vertices of the target mesh are mapped

perpendicular to a specific position x on the spline. This is achieved by utilizing a plane based
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binary search algorithm, starting at x=0.5. In the left side of Fig. 5.5 the color intensity of the
segments indicates the iteration depth of the binary search. The right side shows the plane used to

determine the direction for the next iteration step.

x=0.5

Figure 5.5 The binding process: (left) the perpendicular mapping of vertex v to the spline by using binary

search, (right) a way to determine the search direction in each step.

In order to determine the search direction for x at each step, the perpendicular constraint based on

the scalar product (-|-), the vertex v, and the plane defined by b7 and b, is utilized as follows:

< 0, ifvliesin front of the plane,
(br(x) | v—by(x)) =4=0, if vlies in the plane (solved), (5.5)
> 0, if vlies behind the plane.

The spline-basis representation v’ of v is defined according to the spline's matrix B:

vV=B"1.v. (5.6)

Spline Skinning

To achieve a usable result in character-animation, it is necessary to let each vertex of the
geometry be weighted by multiple splines; otherwise it is not possible to have branches (one bone
branching into bones two) in the skeleton. For assigning the weights per vertex, the conventional
way to paint the weight intensities via color on the geometry similar to a texture map is used. This
method has already proven its effectiveness in various 3D authoring tools such as Maya, 3DS
Max or Blender. An example can be seen in Fig. 5.6, where each of the red, green, and blue
colors is assigned to an individual rigged body part. The colors indicate the weight for each spline.
Red is related to the body spline, green to the shoulder and blue to the elbow. In overlapping areas

the weights are mixed, which results in color transitions. In Fig. 5.6, up to three splines influence
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a single vertex vy. To preserve a correct scaling, all weights w; for each vertex must be
normalized to one. The resulting formula is written as follows:

B"; = B;-B';,

y (5.7
Uf = ?=1Wi . Bi - V.

In Eq.(5.7), two different spline bases (B; and B';) are used. The basis of the actual pose is
defined by B, while B’ defines the basis while binding®. In Eq.(5.7), the basis B’ is pre-computed,
which can be used to write the formula equal to conventional matrix skinning (SSD). In SSD, also
two matrices are used. The difference is that the matrices change depending on the position on the

spline curve.

Figure 5.6 Spline skinning: skinning weights

Deformation Styles

In order to allow a flexible customization by the artist of the spline-aligned deformation
(computed as in Eq.(5.7)), deformation styles is used, allowing pose-dependent modeling of a
joint's deformation that can be used to represent material behaviors of metal, cloth or muscles.
Basic spline skinning does not allow to model such material behaviors. Each style is created from
the combination of two pose-dependent FFD variants, where each of the two variant has its own
advantages that cannot be replaced by the other. In Fig. 5.7, two different deformation styles are

equally applied to three objects. The first method applies a radial scale envelope (Fig. 5.7, Style

5 Binding defines the process where the initial skeleton pose is stored for the undeformed mesh
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1) while the second method uses a rectangular scale envelope (Fig. 5.7, Style 2). The radial scale
envelope (Fig. 5.7, Style 1) is used to model wrinkles and other high detail deformations. The
rectangular scale envelope (Fig. 5.7, Style 2) is used to avoid self-intersections and model radial
bulges. In the following, the deformation styles are detailed.

Object 1 Object 2 Object 3

1

igina

Or

Style 1
[eipey

Style 2
Ie[n3ue)dNY

Figure 5.7 Deformation Styles

5.6.1 Radial Scale Envelope (Style 1)

5.6.1.1 Principle

The Radial Scale Envelope is shown as Style 1 in Fig. 5.7 and is designed to allow high resolution
skin deformation effects such as folds and wrinkles. The algorithm basically applies the
deformation by concentrically scaling a vertex v of the target object with respect to the spline
origin by, as is shown in Fig. 5.8.
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x
by by

4

[] Scale Envelope [ ] TargetObject [ Spline Joint

Figure 5.8 Radial Scale Envelope: The lower left side shows an example envelope while the upper right

side shows the concentric scaling of v in relation to the spline

As indicated by Eq.(5.8) , the scaling is determined by a radial scale function S,;, which depends
on the two-dimensional position (x,a) on the envelopes surface and the pose of the joint. The
variable x defines the position on the spline. The pose is defined by the joint's twist y and the
joint's bend-angle S, which is based on the two vectors 4;, and 4,;. The angle o denotes the angle
between the vertex v and the spline's bi-normal by with respect to the spline's origin b,. Hence,

the deformation function D,,, is defined to evaluate the deformed vertex as follows:

DTad(vl) = U, ' STS(xl al .Bi V);

Va,p € [0,7],Vy = 0. (5.8

Since the scaling needs to be applied in spline space, v’ is used instead of v.

This simplifies the calculation, as the origin in spline-space is by and the multiplication of v' by

any scalar is equal to scaling v’ with respect to by.

5.6.1.2 Radial Scale Function and Textures

The scale function S,, computes the scaling based on three scale textures, shown in Fig. 5.9’s
upper row. The first texture 7y is used for frontal scaling, the second for lateral (7;), and the third
for radial (7,). The weight distribution for the three textures can be seen in Fig. 5.9, lower row.
The weight wy for the frontal texture T, represented by red, w; for the lateral 7; by green, and w, for
the radial 7, by blue. The coordinate system x, « is defined with respect to a cylindrical coordinate

system.
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RS

Frontal Texture Lateral Texture  Radial Texture Example

ASN

Initial Little bent Bent Bent+Twisted  Twisted

Figure 5.9 Scale Textures: The upper row shows the three scale textures that were used to create Style 1 in
Fig. 5.7 and an example object where the textures are applied. The lower row shows the pose-dependent
weight calculation to apply the three textures, where red corresponds to the weight of the frontal scale

texture, green to the lateral and blue to the radial.

The scale factor S, in Eq.(5.8) for a certain vertex v is computed by sampling all three textures at
the texture-coordinates(x, %) and by evaluating the three pose-dependent weights w; ;=) to

compute the scaling result S,.¢ as follows:

VWf’ Wll W‘I" € [011];
VWsumv tf! tll tr; Tf, Tl, TT 2 0’

Wy = max(—cos(a),0) B,
1 = |I(sin()l- B,
Wy =Y
Weum = Wr +w; +w,,
a (5.9)
tf = Wf . Tf (X,;):
a
t = w-T, (X, ;).
a
t, = w.-T, (x, ;),
tr+ 6+t
Sps = ——————+ max(1 — wyyy,, 0).

max(1, weym)
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To achieve a smooth transition between the frontal, the lateral, and the radial scale texture on the

3D object based on the angles a and y, functions are used.

The weights for the frontal and the lateral texture are computed based on the angle a and the
radial weight based on the twist angle y. In Eq. (5.9), wy,, represents the sum of all weights, and ¢;
(i=11,r) the weighted texture samples. In order to preserve unity scaling for identity textures at any

pose, Eq.(5.9) meets the following condition:

Vx,a such that Ty (x, %) =1:S,..(x,a,B,y) =1, forall B,y. (5.10)

5.6.2 Rectangular Scale Envelope (Style2)

5.6.2.1 Principle

The rectangular scale envelope is shown as Style 2 in Fig. 5.7 and allows the design of the
contour’s deformations. The algorithm basically applies scaling of a vertex v in the two directions
bp and by independently, as shown in Fig. 5.10. This is very different from the former radial

method that applies a concentric scaling.

[] Scale Envelope [] Target Object M Spline

Figure 5.10 Rectangular Scale Envelope: The left side shows the application to an example object while

the right side shows the scaling of v corresponding to bg and by
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The purpose of the rectangular approach is the modeling of major frontal folds or lateral effects
such as creating bulges. In order to design the deformation, the artist needs to have freedom to

create three functions, which perform the scaling in the frontal, lateral, and radial direction.

The scaling is performed by two scaling functions S; ,-s;, whereas S; applies frontal scaling in
direction of by , and S, the lateral in direction by. More specifically, the deformation function D,

can be written as follows:

vy - Si(x, B,7)
Droce(@) = |7 (x’,a'ﬂ 2! (5.11)

Z

1

The rectangular scaling is also calculated in spline space, and therefore v’ instead of v is used. The
spline-space representation v’ of v is very handy, because the x-axis in spline space is along by and
the y-axis along bg. This allows an easy handling of the two scaling functions S; (frontal) and §;
(lateral).

Similar to before, the angle o defines the angle between v and by with respect to bo. The two

angles f# and y define the spline's pose.

F
Cx)
L
X
Frontal Curve Lateral Curve Radial Curve Example
Initial Little bent Bent Bent+Twisted  Twisted

Figure 5.11 Rectangular Scaling: The upper row shows the three scale functions. The lower row shows

the pose-dependent weights.



140 Chapter 5 Skeletal Animation

5.6.2.2 Rectangular Scale Functions

5.7

For designing the rectangular scale envelope, the artist can define three curves C; ;.. each of
which directly affects the contour of the deformed object in frontal (C)), lateral (C;) and radial (C,)

directions, respectively.

Fig. 5.11, upper row shows the three curves that are used to create Style 2 in Fig. 5.7. In the
example object on the right, the scale factors can be seen while bending. Green represents the
lateral and red for the frontal scaling. The three curves are basically applied to the two scaling
functions Sy, the same three directions the textures 7, have been applied to S, before. The only
difference to the previous radial scaling is that frontal and lateral scaling are treated separately.
The calculation of the lateral weight w'; can further be simplified as it does not depend on « as

opposed to the radial scaling; thus, Syand S; are as follows.

!
VCs, Cy, Gy, c, €L Cry Wi, Wsum1, Weumz 2 0,

wy = B
Wsym1i = Wr + Wy,
Wsum2 = Wl’ + Wy,
AN S (5.12)
a = w X)), :
& = wp-G(x),
S G4 max(1 0)
= —— — +tmax(l—-w ,0),
! max (1, Wgym1) * sumt
c+c
S = — LT max(1l — Wgyma, 0).

max (1, Wgymz)

To achieve the pose-dependent weights that are used to define the importance of each of the curve
Ci (i=t1n> a couple of example poses are presented in Fig. 5.11, lower row, where the weights are
indicated by color. The lower row shows the pose-dependent weights. Red corresponds to the weight of
the frontal scale function, green to the lateral and blue to the radial. The intensity of each color represents

the intensity value of the respective weight.

For the computation of Syand S;in Eq.(5.12), three new variables are introduced in addition to S,

is, the new lateral weight w; ’, the frontal weight wy,,,; and the radial weight wy,,,.

Similar to the radial scaling function S,,, the frontal and lateral scaling functions Sy and S; also

preserve unity scaling (S; ;) for identity curves (C; i=f;,)-

Deformation Styles and Spline Skinning

The vertex’s eventual coordinates v, calculated by the deformation are computed as follows (i

represents the index of the spline curve):

-1

Vr = Z?:lwi B - Drect(Drad(B’i ’ U)) (5.13)
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In Eq.(5.13), two different spline bases are used: B and B'. The basis of the actual pose that
changes during the animation is defined by B, while B’ defines the initial basis for binding that
remains constant all the time. The radial deformation, the rectangular scaling, and finally the
spline deformation are applied successively for each of the n=3 splines (Fig. 5.6). Then the three
partial results of each i are summed up using the skinning weights w; for computing the final
result.

In transition areas where two or more splines meet, styles are blended automatically, where the
blended styles depend on the skinning weights.

I ~
Pass 1 Pass 2 Pass 3
Spline control points Bind space matrices h Tfansformed
Spline parameters 3 Scale-textures —#| Vertices + Normals
SR NcRAIATCIELS, 3.Scalecurvas. e

)

g

[ Pixel Shader s,“’.“}]

) Vertices ]

o
Weights + Bone IDs
+ Normals [ Transformed

-

= Vertices + Normals
PBO /VBO

U - ‘ Spline space ’
~ Pixel Shader {g} Vertex Shader {s}

Spline space
matrices

Transformed
Vertices + Normals Render
FBO

Normal

Figure 5.12 GPGPU based accelerations of the computations.

Fast Computation based on the GPU

To accelerate the computations, the OpenGL shading language GLSL and the render-to-vertex-
buffer technique [63] are used. The render-to-vertex-buffer technique can be realized in OpenGL
by using the frame-buffer-object (FBO) and the pixel-buffer-object (PBO) extension to perform
the deformation.

To achieve an efficient implementation of the proposed GPU based algorithm, several
improvements, as well as a couple of restrictions are made to the proposed system.
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The proposed method consists of three passes, which are overviewed by Fig. 5.12. In the first pass,
all spline matrices are computed and stored inside a temporary texture. In the second pass, the
transformed geometry is computed, and in the third pass the geometry is visualized. The entire

deformation, i.e. spline skinning and deformation styles, is applied in pass two.

One major key to this system's speed is the use of the Pixel Shader for computing the deformation
rather than using the Vertex Shader. The reason is that not only the Pixel Shader is much more
flexible but also it has much more computational power on most recent graphics cards. Using the
Pixel Shader for general computations is a well-known technique that is often referred to as
general purpose GPU computations (GPGPU), as the computed result of the Pixel Shader is
stored in a temporary buffer, the FBO, in GPU memory and might be used for any purpose. The
second optimization is of the separation of the evaluation of the spline basis B and the
deformatiom of the vertices. Instead of computing the spline basis for each vertex individually,
which causes heavy overhead for the computation, this implementation samples the spline at a
fixed number of positions and stores the result into three temporary textures in the pass 1 in the
Fig. 5.12. These textures are then passed to the per vertex computation of the deformation in the
Pass 2 in Fig. 5.12. The pass 3 is responsible for visualizing the object by utilizing the

transformed vertices sent from the pass two.

Pass 1

Pass 1 samples the spline at a fixed number of positions and stores the resulting spline bases B
(3 X 4 matrix) into three temporary 16-bit RGBA floating point textures. Table 5.1 shows all

formats used here in detail.

In OpenGL, a pixel shader can use inputs from constant program variables, from textures and
from the vertex shader. The inputs for the Pixel Shader program are the spline control points and
all the additional spline parameters such as twist and stiffness. These inputs are passed as textures,
as this is the only possible solution to manage a large number of spline curves, while the matrix
outputted from the pixel shader program is written into three frame buffer objects (FBOs) in

parallel. Each FBO is linked to a texture to be used by the pass two.

Table 5.1 Texture formats: Here an overview of the used texture and buffer formats.

Identifier Type Data-type
Spline parameters + control points Texture |RGBA float 32
Vertices Texture RGBA float 16
Weights+BonelDs+Normals+Offsets Texture |RGB byte 8
Bind space matrices 3xTexture |[RGBA float 16
Spline space matrices 3xTexture RGBA float 16
Scale Textures+Functions 3xTexture |RGBA float 16
Transformed vertices+normals PBO/VBO |4x float 32
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5.8.2 Pass?2

In the second pass, the deformation for each vertex is computed. Of all three passes, this pass is
the most important, as it performs the spline skinning and the deformation styles, and also the
most time-consuming. For the input, Pass 2 requires 12 textures (Table 5.1) that contain all data

for the deformation. The 12 textures are divided into the following parameters: the inverse initial
. -1 . .

matrices B'; ~ (3 textures), three scale textures (Section 5.6.1) and scale curves (Section

5.6.2)(together one texture), vertices v (one texture), vertex weights w;, bone id's, normal vectors

and spline offsets (stored in one texture), and, finally, the spline matrices B; computed by pass 1

(3 textures).

Normal Weight Index Offset
N W l (@)
—7 N R A N g
Nx | Ny | Nz MWz W3 Id1/1d2|1d3 Sl O2 Q3

Storage in the Texture

4 Texels per Element

Texture

Figure 5.13 Shared Texture 1. Vertex normals (N), weights (W), bone indices (I) and spline offsets (O)

are stored in one texture. The NWIO pattern applies for the empty space of the texture as well.
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Frontal Scale | 2 Texel Usage
Texture 3 R G B A

Lateral Scale | &
Texture 3

Radial Scale | 2 Normal Vector
Texture 3

Scale Factor

Figure 5.14 Shared texture 2. Scale textures and scale curves are stored in one large texture. Each texel’s
RGBA value in the texture (left) is used as defined on the right side.

Concerning the texture that stores the vertex weights, bone ID's, vertex normals and spline offsets
together, storing all of these elements in an interleaved way is used as optimal cache use as shown
in Fig. 5.13. This is because the GPU does not read its RAM byte by byte. It reads at least 8 bytes
at once from a memory location; therefore, the read accesses are minimized using an interleaved

data structure.

The spline offsets are equal to the above mentioned position x on the spline. The created structure

requires 4 pixels in the texture (texels).

In case of the texture sharing the three scale textures and the three scale curves, a small texture

atlas as shown in Fig. 5.14, left side, is created to reduce the number of used textures.

The large texture consists of six parts: three scale textures and three scale curves. The three scale
textures require most of the space, while the three scale curves only require one texel width at the
right most column. The right half of Fig. 5.14 shows how each texel of right column of the texture
is used. The scale factor and the corresponding normal vector are stored together in one RGBA
texel. This is very similar to storing a bump-map and a normal map in one texture. The stored
scale factor is required for the deformation of the vertex, while the normal vector of the scale

function as well as the scale curve is needed for deforming the normal vector.

A detail in the pixel shader implementation is the use of texture-filtering during sampling the
spline matrices. Texture-filtering helps to efficiently use the graphics hardware to linearly
interpolate between two spline matrices. Without this filtering, the spline would show strong

aliasing artifacts, as can be seen in Fig. 5.15.
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Figure 5.15 Spline discretization: Pre-computing all splines is one of the key improvements in the

implementation to increase the speed.

Concerning the deformation, the deformation style was only applied to the most significant spline
curve of the three spline curves with the greatest weight. This significantly speeds up the

computation without showing major drawbacks in the appearance of the deformed geometry.

Pass Three

The third pass is the rendering pass, which visualizes the computed geometry. First, the FBO that
has been computed in Pass Two is copied it to a pixel buffer object (PBO). The PBO is then used

as a vertex buffer object (VBO) for visualizing the mesh as OpenGL vertex array.

Experimental Results and Discussion

Experimental Conditions

For the experiments, an NVIDIA7800 GTX graphics card and a Pentium4 3.2 CPU was used. The

data used for the experiments has been common triangle data 3D models.

Various poses are created to show the flexibility of the proposed approach. Figure 5.16 shows
three poses: The bind pose (left), a basic bend deformation (middle) and a combination of bending
and twisting (right). The underlying skeleton was created by attaching the arm-spline to the upper
control point of the body-spline and the elbow-spline to the right control point of the arm-spline.
Concerning the pose in the middle, even the large scale deformation near the shoulder does not
lead to self-penetration. All the three poses show correct, seamless transitions between deformed
and un-deformed areas. A simple animation sequence including a muscle deformation style is

shown in Fig. 5.17.

Non-Collapsing Geometry

Non-collapsing geometry for the proposed spline skinning is shown in Fig. 5.2. There, spline
aligned deformation is compared to FFD and SSD. Different from SSD and FFD, spline aligned
deformations do not expose deformation artifacts. Further examples including bend and twist

operations are shown in Fig. 5.16.
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Figure 5.16 Basic Spline Skinning: Three poses for an animated chest-arm-shoulder model. The binding
pose (left), simple bend operation (middle), and, finally, bending combined with two twist operations, for
the hand and for the body (right).

Figure 5.17 Spline Skinning with a simple muscle deformation style in 8 frames.
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Figure 5.18 Facial Animation: Lips and cloth folds can be animated using spline skinning. Up-left the
final animation and up-right the bind pose, where each color R,G,B is assigned to one spline. The lower part
shows an animation sequence.

1 Joint 2 Joints 3 Joints 1 Spline
Matrix Skinning Spline Skinning

Figure 5.19 Spline Skinning compared to matrix skinning for multiple joints.
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Small Number of Control Points

It is possible to apply skinned skeletal animation efficiently to facial animation as Fig. 5.18
demonstrates. Using just two splines, it is possible to represent the lips of a character. Other
methods such as DQS or SSD require more joints for achieving the same result. In Fig. 5.18, the
final result can be seen on the left, while the right side shows the initial binding pose including

vertex weighs for each spline.

A direct comparison from single spline to matrix skinning using multiple control joints to

approximate a curve is demonstrated in Fig. 5.19.

Deformation Style Results

Fig. 5.20 demonstrates metal-like behaviors, where a cuboid is used for creating snapshots from

various poses.

In Fig. 5.21, the proposed method's ability to design transferable muscle bulges is presented. The
left side shows two characters using conventional spline-skinning, while the right side includes

deformation styles.

Concerning deformation styles, further results can be seen in Fig. 5.7, where two styles are
applied to three objects. Since the object’s shape is very different, the geometry independence of

the proposed method can be demonstrated successfully.
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Figure 5.20 Metal: This Figure shows the animation of designed metal, which smoothly deforms as the
pose changes. Upper row: deformation styles are applied; lower row: spline skinning without deformation
styles.

Figure 5.21 Muscles: Created muscles can easily be applied to different characters simultaneously.
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Figure 5.22 Muscles on David:middle: without, right: with.

Figure 5.23 Hollow materials: Here an animation of crunching an empty can.

It can be confirmed that the surface details of the character in the lower row work well along with
the applied muscle-style. It is also possible to apply the style to an anatomically correct human
body, as shown in Fig. 5.22. The same style is applied to the right arm of the David statue. The
rightmost and middle images show the results with and without style, respectively.

An example for modeling the deformation of a hollow material can be seen in Fig. 5.23. The
realism is improved by displacing the spline origin b, along the binormal by while applying D,
and D,

The successful prevention of self-intersections by using deformation styles can be seen in Fig.
5.24. 1t is an example for designing lateral bulges, where all the three curves that are shown in Fig.
5.10 are modified by defining the curves as functions. The imitation of cloth is demonstrated by
Fig. 5.25, where the applied cloth style showing wrinkles near the knee region can clearly be
recognized. The textures that are used in the results were painted using conventional imaging
tools. However, for an improved workflow, interactive texture-painting in a WYSIWYG® fashion
might be advantageous.

66 WYSIWYG is the abbreviation of “What You See Is What You Get”.
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Figure 5.24 Self-intersections: Demonstrated are self-intersections (up-left) and the efficient removal of

self-intersections (up-right) as well as modeled lateral bulges. The used curves are shown in the lower row..
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Figure 5.25 Cloth: This example shows the algorithm’s ability to imitate cloth-like wrinkles. Upleft and
down-left: non-style version. Up-right and down-right: deformation styles version. The red circles show the
affected region.
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P4 3.2Ghz, NVidia GeForce 7800GTX
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Figure 5.26 Benchmark results: Spline skinning indicates basic spline aligned deformation, Radial adds
Drad, Rect adds Drect and Rect+Radial adds both.

Computation Speed

The benchmark of the proposed method is shown in Fig. 5.26, where Radial+Rect indicates that
radial and rectangular deformation styles are enabled, Rect indicates that only the rectangular
deformation styles are enabled, Radial indicates that only the radial deformation styles are
enabled, Spline Skinning indicates that deformation styles are turned off, and SSD represents
matrix skinning. The number left to the objects represent the number of copies that were rendered
simultaneously to achieve a vertex count of about one million for benchmarking each scene.

In case that only basic spline skinning is used, the proposed algorithm gets close to SSD and
reaches the speed of 85 Million vertices per second, while the original SSD reaches 91 Million
vertices per second.

If the proposed deformation method (Radial+Rect) is switched on, the speed decreases to 30M
vertices per second, which is still satisfactory for real-time applications.
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Even each scene used (one scene corresponds to one row in Fig. 5.26) for benchmarking consists
of about one million vertices, the speed is not equal for all objects, which might be caused by an
implementation issue of the proposed method. The rendering context of the frame-buffer-object
(FBO) is switched for each object, which is a relatively expensive operation. However, there is no

direct relation to computing the deformation.

The detailed timing is shown in Table 5.2. It is created to measure the proposed method's
performance in more detail. The timing is investigated for two scenes — cuboid and cylinder

(upper-most row and second upper-most row in Fig. 5.26).

Table 5.2 Timing breakdown:

Scene 12x Cuboid | 75x Cylinder
Vertices Object 12528 92526
Vertices Scene 12 x 12k 15 x92k
=(0.94M =1.11M
Spline Samples [2 x3x32 3z
= 1152 = 7200

Timing (Scene)
Spline Matrices 0.3 ms 0.3 ms
Deform (Radial) 7.8 ms 8.7 ms
Deform (Rect) 12.6 ms 9.7 ms
Deform (Spline) 5.5 ms 7.9 ms
Copy FBO to VBO 1.9 ms 4.9 ms
Render Scene 3.4 ms 4.5 ms
Total 31.7 ms 36.1 ms
Vertices/sec 34.4M 25.4M

The skinning based on three spline-curves, each of which are approximated by 32 samples, was
also computed for each of the two objects. The scale texture resolution is 32 X 64 pixels,
concerning the timing breakdown, it can be seen that the major time consumption is caused by the
two deformation methods (radial and rectangular deformations), followed by the spline-skinning

(spline deformation). Pre-calculating the spline matrices requires much less time.

The step called Copy FBO to VBO is required by the OpenGL architecture and does a complete
copy of all vertices from the FBO to the vertex-buffer-object (VBO). The final step for rendering
the scene is relatively fast, as complex lighting evaluations were not included. Character scenes
consisting of about 1 Million vertices were created for benchmarking, in order to get

representative results.

Summary: The proposed spline-based skinned skeletal animation system outperforms the old
version of the proposed spline skinning method [46] by factor three for the basic spline skinning

without deformation-styles. The proposed method's speed without deformation-styles further gets
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close to the performance of SSD, which is often referred to as the fastest skinned skeletal
animation system. In case of deformation styles are added, the proposed method still shows a very
competitive speed, as the vertex deformation rate remains high at 30 Million vertices per second

on the utilized testing system.

Re-Usability

The proposed method allows the abstract design of pose-dependent deformation behaviors for the
imitation of complex material deformations. Once designed, a style can immediately be applied to
an arbitrary number of joints simultaneously, as shown in Fig. 5.21. This saves time for the artist
during the modeling phase, and may further save memory during run-time, as each style needs to

be stored only once.

Other contributions

The following items are not included in this chapters’ goals, but it can be said that these are

features of the proposed method.

Simplicity: The proposed algorithm is based on simple mathematics and does not contain
complex data structures or the requirement of comprehensive mathematical libraries. It is
assumed that the implementation is feasible in a reasonable time without complications.
Furthermore, the designed deformation styles cover the complete pose-space of a joint and

hence avoid the usage of radial basic functions for the interpolation between certain poses.

Memory consumption: In contrast to the GPU-based spline-aligned skeletal animation system
[46], where each vertex and each normal of the animated mesh were required to be stored three

times (once for each spline), the proposed algorithm requires them to be stored only once.

Comprehensive Evaluation

For the comprehensive evaluation, multiple related methods are compared: the proposed spline
skinning, the proposed deformation styles, QS, DQS, matrix skinning, and matrix skinning
with PSD. Table 5.3 shows the general comparison in terms of speed, deformation artifacts,
support to solve for multiple conventional joints, re-usability and support for custom pose
dependent deformations. Figure 5.27 and Fig. 5.28 show the side by side comparison of
matrix skinning (SSD), QS, DQS and the proposed spline-skinning.
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Table 5.3 Related methods and their features.

Solves for
Re-usable Custom Pose- multiple
Deformation Dependent Deformation | conventional
Method Speed Styles Deformations Artifacts joints
Matrix Skinning (SSD) 100% No No Candywrapper No
QS (spherical interpolation) 34% No No Discontinuity No
QS (linear interpolation) 78% No No Discontinuity No
DQS 72% No No Bulging No
Spline Skinning 92% No No None Yes
Spline Skinning with
Deformation Styles 35% Yes Yes None Yes
None
Matrix Skinning with (if hand-
PSD (GPU) 84% No Yes modeled) No
180° Twist Deformation
fotns Dual Quaternion ‘
Skinning
}
|
G_ |
lV.Iatr.ix Spline |\
Skinning skinning |

90° Bend Deformation

Matrix
Skinning

Dual Quaternion
Skinning

Figure 5.27 SSD, DQS and Spline Skinning Methods Compared (1): upper row: twist operation, lower

row: bend operation
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Spherical Blending Dual Quaternions Spherical Blending Dual Quaternions

Figure 5.28 QS and DQS Skinning Methods Compared (2). Left: artifact-free twist operation; right:

cloth deformation. Images with courtesy of Ladislav Kavan, Skinning with Dual Quaternions [20]

As for the performance compared in Table 5.3, it turns out that basic matrix skinning (SSD) is
the fastest method, followed by spline skinning as second fastest, then PSD, QS (linear), DQS,
spline skinning with deformation styles and QS (spherical).

Basic Skinning

Matrix skinning is fastest but not artifact-free, as shown in Fig. 5.27. Matrix skinning exposes
the candy-wrapper effect as can be seen in Fig. 5.27, upper row, left for twisting deformations.

It further exposes collapsing geometry, Fig. 5.27, lower row, left, for bending deformation.

Methods that improve upon this short-coming are QS and DQS. Both methods solve for the
candy-wrapper artifact exposed by SSD by changing the interpolation domain from matrices to
quaternions and dual quaternions. The efficient prevention of the candy-wrapper effect is
demonstrated in Fig. 5.28, left side: the hand geometry does not collapse near the wrist during
the twist operation for QS and DQS. The advancement of DQS over QS is demonstrated in Fig.
5.28, right side. Discontinuities for the cloth deformation exposed by QS are avoided with
DQS.

DQS improves on matrix skinning and QS, but it exposes bulging artifacts while bending, as

Fig. 5.27, lower row, center shows.

The proposed spline skinning, Fig. 5.27, left (upper and lower row), can solve for this issue

and deform the geometry artifact-free at high performance.

As for PSD, it is an example based method built on top of SSD. It will show artifacts equal to
SSD if no example poses are defined. It is up to the artist to modify each vertex for each pose
individually to avoid any artifacts or create custom deformations. Therefore, even PSD is fast
and able to solve for deformation artifacts, but it does not solve them automatically as spline
skinning. Furthermore, PSD requires extra memory for each customized vertex and each pose.
Creating an artifact-free deformation result for every pose using PSD requires a significant

amount of memory.
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Custom Deformations

For achieving custom deformations PSD and the proposed Deformation Styles are compared in
Table 5.3. As for the computation speed, PSD [58] is significantly faster than the proposed
Deformation Styles. Further, both methods are able to avoid self-intersections and to create
custom deformation styles such as muscles or cloth. Here, PSD is more flexible in terms of the
vertex movement. While the proposed deformation styles method is limited to a concentric
vertex movement with respect to the spline, PSD allows arbitrary movements of the vertices.
However, in case of PSD, each vertex for each pose needs to be hand crafted, while
deformation styles lets the artist create the deformations for all poses at once with three
textures and three curves. Moreover, deformation styles allows one style template to be
applied immediately to any number of target joints and target characters, which is a significant
improvement over existing methods including PSD. It saves time for the artists and reduces the

memory consumption as well.

In total, the proposed method is best.

5.9.9 Limitations

5.9.9.1 Spline Skinning

Even though the proposed method has many advantages in the design of high quality
deformations, there are also certain limitations. The first one is the volume preservation. Since the
proposed method is completely dependent on the artist's design, it is up to the artist to design a
deformation that seems to preserve the volume or one that models a hollow material and does not

preserve it.

5.9.9.2 Deformation Styles

The second limitation is related to PSD. As opposed to PSD, which allows each vertex of a target
mesh to be modeled pose-dependently in an arbitrary manner, the proposed deformation styles
method can only affect vertices by the constraints of sweep based FFD; therefore, in an
orthogonal direction to the spline curve, as mentioned in the previous section. The last issue is
concerned with self-intersections. The proposed method neither computes nor automatically
prevents them; however, the artist can create deformation styles that give the impression of an

intersection-free deformation.



5.10

Chapter 5 Skeletal Animation 159

Conclusion

This chapter has proposed two skeletal animation methods that can achieve the four goals, which
are categorized into two groups: (1) artifact-free, fast computation, and few control joints, and (2)
re-usability. To achieve the goal group (1), this thesis has proposed a Spline Skinning based on
spline aligned deformations and blending multiple spline curves using vertex weights. To achieve
the goal group (2), this thesis has incorporated deformation styles into the above-mentioned
Spline Skinning so that pose dependent deformations can be designed by defining three scale
textures for detailed deformations and three scale curves, which can be re-used for skeletal objects

with any number of joints.

Experiments for exploring the validity of the proposed method were conducted using multiple
triangle models together with manually rigged skeletons. The experimental results and discussions

are summarized as follows.

Goal group (1)

e Artifact-free: The proposed method does not expose deformation artifacts, while related
methods expose the following problems: Matrix skinning exhibits collapsing geometry
and the candy-wrapper artifact, DQS exhibits unnatural bulges for bending deformations,
and QS exhibits discontinuities for complex deformations.

e Fast computation: As a result of bench marks, it turns out that SSD is the fastest, and the
proposed method is second fastest (90 to 96% of SSD), but faster than QS and DQS.

e Reducing the number of joints: The experimental results show that the proposed method
achieves a complex facial lip animation with only two spline curves and spine
deformations by only one spline.

e As a result of the comprehensive evaluation it is confirmed that the proposed method

works best for the above-mentioned three goals.

Goal group (2)

e Re-usability: Experimental results show that the proposed method can apply a

deformation style to two different characters successfully.

For the proposed spline skinning, it is limited to a number of three control points. Future work
might include experiments with more control points. For deformation styles, the limitation is in

terms of computation speed as the proposed method is significantly slower than PSD. Future work
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might include improving the speed and further applying the deformation textures to the surface of

the geometry as bump map.
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Chapter 6. Conclusion and Future Work

6.1

Conclusion

The goal of this thesis is to improve methods for visualizing common elements in video game
applications by overcoming the limitations of existing methods. The common elements which this
thesis deals with include terrain, static objects, and skeletal animation. This thesis explores how to

improve each of the three common elements as follows.

Chapter 1 is the introduction of this thesis. This chapter claims that this thesis explores how to

improve the visualizations of the common elements to be embedded into a 3D engine.

Chapter 2 explains 3D engines and their relationship to Game Engines as well as 3D engines’

functions.

Chapter 3 has proposed a nested CB (Clip-Box) based approach that is able to generate procedural
volumetric terrains with unlimited size without pre-computation in parallel to visualization. A CB
consists of a cubic regular grid of voxels and the corresponding triangulation. Nested Clip-Boxes
that utilize mathematical functions that define the terrain allow the immediate and pre-
computation free generation and concurrent visualization of arbitrary sized volume data.
Experiments using data generated from terrain functions, data from existing volume data sets and
height-map data prove that the proposed method can generate terrains with unlimited size without

pre-computation and then visualize them concurrently.

Chapter 4 has proposed a raycasting based method for the fast visualization of complex RLE
compressed voxel data scenes without consuming much memory. The proposed method improves
the original voxel forward projection algorithm in several ways so that complex scenes are
efficiently visualized with low memory consumption is achieved. For low memory consumption,
this thesis proposes a new data structure for RLE. For fast computation, the proposed method is
completely optimized for highly parallel single instruction multiple data processing on the GPU
and uses newest NVIDIA CUDA technology. Experimental results show that the proposed
method and Qspat consume least memory, and that the proposed method and some related
methods are fastest and faster than Qsplat. The comprehensive evaluation based on these results

indicate that the proposed method is best in terms of the goals of this chapter.
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Chapter 5 has proposed two skeletal animation methods that can achieve the four goals, which are
categorized into two groups: (1) artifact-free, fast computation, and few control joints, and (2) re-
usability. To achieve the goal group (1), this thesis has proposed a Spline Skinning based on
spline aligned deformations and blending multiple spline curves using vertex weights. To achieve
the goal group (2), this thesis has incorporated deformation styles into the above-mentioned
Spline Skinning. Results of experiments that confirm whether the goal group (1) is achieved show
that the proposed method achieve artifact-free and small number of control joints as opposed to
related works and that the computation speed is the second fastest. Comprehensive evaluation
based on these results indicates that the proposed method is best. Results of experiments that
confirm whether the goal group (2) is achieved show that the proposed method can apply a

deformation style to two different characters successfully.
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Future Work

In case of procedural volumetric terrain, Chapter 3, additional studies to include better frame-to-
frame caching of the generated geometry as well as exploring different methods for the
visualization could be conducted. As graphic cards become more versatile, ray-casting the volume

data rather than converting the data into polygons becomes an option.

The future work of voxel ray-casting, Chapter 4, includes exploring ways of streaming the voxel

data into the GPU, in order to allow large and complex scenes to be visualized.

For skeletal animation and deformation styles, Chapter 5, further research can be carried out on
rendering detailed surfaces with few polygons. For that, deformation styles might not only be

applied to the geometry, but also the surface by using bump-mapping e.g.

For long term, based on this thesis’ achievements, the proposed modules could be embedded in

modern 3D engines such as CryEngine 3.
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