
IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. xx JANUARY 20xx

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

Paper

Efficient, High-Quality, GPU-Based Visualization of Voxelized

Surface Data with Fine and Complicated Structures
Sven Forstmann

†
, non-menber and Jun Ohya

†
, member

SUMMARY This paper proposes a GPU based method that can

visualize voxelized surface data with fine and complicated features, has

high rendering quality at interactive frame-rates, and provides low

memory consumption. The surface data is run-length-encoded (RLE)

for each level-of-detail. Then, the loop for the rendering process is

performed on the GPU for the position of the viewpoint at each time

instant. Raycasting of the scene is done in planes, whereas each plane

is perpendicular to the horizontal plane and passes through the

viewpoint. For each plane, one ray is cast to rasterize all RLE elements

intersecting this plane - starting from the viewpoint and ranging to the

maximum view distance. The rasterization process projects each RLE

element passing the occlusion test onto the screen at a level of detail

that decreases with distance of the RLE element from the viewpoint.

Finally, smoothing of voxels in screen-space and full-screen anti-

aliasing are performed. To provide lighting calculations without storing

the normal vector inside the RLE data structure, our algorithm recovers

the normal vectors from the rendered scene’s depth-buffer. After the

viewpoint changes, the same process is re-executed for the new

viewpoint. Experiments using different scenes show that the proposed

algorithm is faster than the equivalent CPU implementation and other

related methods. Our experiments further prove that our method is

very memory efficient, and achieves high quality results.

key words: Volume data, Voxels, Raycasting, Splatting, View-Transform,

Run-Length-Encoding..

1. Introduction

1.1 Background

Traditionally, polygon based rendering has been more

efficient than point primitive (splatting) or volume-pixel

(voxel) based rendering. However, polygonal models are

becoming more and more detailed, leading to dense

meshes where each polygon merely covers a few pixels

on the screen. Once polygonal meshes become so dense,

rendering results by polygons, point primitives or voxels

do not show significant differences in quality and

rendering speed. This means that voxel and point-based

rendering methods gain more importance. This is

because as the rasterized size of voxels, splats and

polygons become similar, rendering a voxel or splat

employs considerably less computation than rendering a

polygon.

Previously, an advantage of polygon-based rendering

was the ability to use repeating textures to save memory.

Voxel and splat based rendering inherently use unique

texturing, so there is no benefit in memory consumption

from using repetitive texturing. However, as there is a

recent trend to use unique, non-repeating, textures for

each object on the screen (Megatexture technology [15]),

the memory consumption for polygon-based rendering

sharply increases. Therefore as this trend continues, the

memory consumption of voxel and splat-based rendering

becomes comparable with unique textured polygon

rendering.

Next, we want to compare the use of level of detail

(LOD) between voxels and polygons. LOD is important

to accelerate the rendering and decrease the run-time

memory consumption. For polygonal objects, LOD is

usually implemented as follows. First, a set of polygonal

objects with different levels of detail is created by the

artist. Then, at run-time, the proper LOD of the object is

selected according to the distance from the object to the

camera and the object is visualized on the screen. Voxels

can handle LOD more efficiently than polygons, because

voxel data can be easily down-sampled for

representations in lower details. Therefore, it is not

necessary for an artist to design separate models of the

same object for each level of detail, the different levels

of detail can be generated automatically.

The final advantage of voxels over polygons we wish to

mention is, Boolean operations can be applied much

easier to voxels compared to polygons.

Despite all these advantages of voxels over polygons, it

should be noted that deformations and skeletal

animations in real-time still pose a challenge for voxel-

based representations.

Point and voxel based rendering are very similar.

However, the major difference between voxel based

rendering and point-based rendering is that voxels

occupy a well-defined cubic portion of volume in space,

while point-based methods approximate the geometry

usually by 2D splats.

For reasons related to the fact that splats are 2D

approximations of a 3D object, there have to be several

exceptions implemented for a point-based algorithm to

be robust. Voxel based algorithms are generally more

robust without the need for such exceptions, because a

voxel covers a well-defined portion of space in 3D.

1.2 Related Work

We split the related methods into three groups: rendering

 Manuscript received January xx, 20xx.
 Manuscript revised March xx, 20xx.
 † The author is with Waseda University, Tokyo, Japan.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

2

voxel volume data by using Shear-Warp [3], raytracing

based algorithms and point based rendering. We will

briefly overview the most widely used methods in each

group and mention their key issues.

Shear-Warp [3] renders RLE volume data in a front to

back manner to a temporary texture. The temporary

texture is then mapped to the screen. It has been proven

to be very fast for dense, semi-transparent volume data.

However, it requires storing three copies of the volume

data in memory, as the data is run-length-encoded for

each axis independently: x, y, and z.

Raytracing methods use tree-like structures such as

octrees, KD-trees and bounding volume hierarchies

(BVHs) to compress the voxel data and accelerate the

raytracing process. An octree-based raycaster proposed

by A.Knoll at.al. [13] uses a pointer-based octree

structure so that large iso-surfaces can be raycast

interactively with high quality. The pointer-based octree

structure is advantageous in that spatial queries can be

made very efficiently. However, it needs to store at least

one pointer (usually 4 bytes) for each node, which is

more than two times the memory requirement of position

data in typical RLE scenes.

As a variant of raytracing methods, Gigavoxels [11] uses

bricks of volume data in combination with octrees to

store voxels for interactive raytracing. The method

suits well for raycasting large, semi-transparent volume

data. Its features include filtering for high quality, and

streaming on demand from the hard-drive to the GPU or

CPU for enabling data sets larger than the CPU or GPU

memory. However, it is not optimal for visualizing

pure opaque surface data, because the used bricks store

redundant transparent voxels as well, which increases the

memory consumption.

One of the most well-known point based rendering

methods, Qsplat[9], inspired many other researchers to

propose similar rendering approaches. As an evolution of

Qsplat, FarVoxels[10] improved the basic point-based-

rendering by introducing a hybrid method that also

utilizes polygonal rendering for geometries close to the

viewpoint. However, as these methods employ either

point-based rendering or a combination of point-based

and polygonal-based rendering, they suffer from the

earlier described disadvantages when compared with

voxel-based rendering.

1.3 Proposed Approach

Since none of the related methods possess all of the

following three properties: low memory consumption,

high rendering performance (fast rendering) and optimal

rendering quality, the purpose of our research is to find

an optimal combination of all of the three technologies.

Furthermore, we would like to improve the voxel data

structure. We do not want to store the voxel’s surface

normal along with the voxel data. However, we still want

to be able to recover the normal vector for lighting

calculations. More specifically, our method should

achieve the following goals:

(1) Highest quality of rendering voxel data by applying

voxel smoothing and anti-aliasing.

(2) Significantly lower memory consumption than other

methods, which are able to achieve highest quality, such

as raycasting.

(3) High rendering performance even in complex

environments at interactive frame-rates from arbitrary

viewpoints.

(4) Support for recovering the voxels’ surface normals

from the depth buffer.

Our proposed approach is based on the so-called “voxel-

based forward projection algorithm” developed by

Wright et al. [1], which renders voxel data with lower

memory consumption than the Shear-Warp algorithm.

We further modified the original voxel based forward

projection algorithm to deal with completely arbitrary

voxel data, as is done in the unpublished work of Ken

Silverman [2]. The original forward projection algorithm

categorized the data into two groups: terrain, and objects

that were placed on the terrain, such as trees and

buildings. Each of these two groups of data had its own

rendering technique. In [2] and in our approach, voxel

data is stored in a uniform way as RLE data. An

advantage of storing the data in a uniform way as

opposed to categorizing the data into groups is, the data

can be rendered using the same algorithm, hence

reducing implementation complexity.

In this paper, we intend to achieve our goals by applying

the following novel improvements to the voxel-based

forward projection algorithm:

• Integrating the entire algorithm on the GPU

• Adding two novel culling algorithms to prevent

unnecessary processing of occluded RLE

elements

• Adding a novel smoothing filter for the removal

of block-like artifacts of voxels close to the

screen

• Include the recovery of surface normals from

the depth buffer as a rendering post process

To accelerate the rendering process, our approach, for the

first time, integrates the entire rendering algorithm on the

GPU by using NVidia’s CUDA[6] and the Pixel Shader.

Until recently, graphics hardware was incapable of

supporting random writes, which are crucial for the

proposed method.

To improve the speed, we integrated three novel

algorithms for the purpose of skipping occluded RLE

IEICE TRANS. ELECEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated StructuresTRON., VOL.XX-X, NO.X XXXX

XXXXEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated Structures

3

elements during rendering.

In order to remove the blocky appearance of voxels near

the camera, we implemented a novel voxel smoothing

method that is performed on the GPU as a post-process.

Surface normals for light calculations are normally saved

in the voxel data structure. However, to save memory,

our algorithm does not store the surface normals, but

recovers them from the scene’s depth-buffer in real-time

as a post-process. It is the first time that this post-process

has been successfully implemented in real-time. Also,

this is the first time that this process has been

implemented on the GPU

1.4 Organization

The paper is organized as follows. Section 2 outlines the

proposed method. Section 3 explains the pre-

processing. Section 4 elaborates on the rendering by the

GPU, Section 5 evaluates the proposed method

experimentally, and Section 6 concludes this paper.

2. Overview

As shown in Fig. 1, the 3D surface voxel data exists in

the x-y-z world coordinate system, where the x-z plane is

the horizontal ground plane.

As shown in Fig.2, the algorithm consists of a series of

steps, starting with the pre-processing step and ending

with rendering the scene and changing the viewpoint. In

the pre-processing step, the voxel data is run-length-

encoded for each LOD in the vertical (y) direction. It is

important that the encoding direction is vertical, because

this leads to a higher average speed of the algorithm for

the general case, when the camera looks towards the

horizon. The details of this pre-processing step are

described in Section 3.

As shown in Fig. 2, after copying the RLE data to the

GPU’s memory, the loop for visualizing the RLE data

from the viewpoint at each time instant starts. As can be

seen in Fig. 1, our proposed method visualizes the scene

in planes that are perpendicular to the x-z plane and

share the straight line that passes through the viewpoint

and is parallel to the y-axis (Down-vector). Raycasting

the RLE data in each concentric plane is done step-by-

step from near to far along the x-z plane, while the

rasterization is done for each step in the vertical direction

(parallel to the y axis) from top to bottom. To be more

specific, for each step in the x-z-plane, all the RLE

elements in the corresponding column are rasterized by

projecting them into the screen space. Since the

projection of each concentric plane is a line slanted

across the screen space, the results of rendering the

planes are stored as temporary bitmap for performance

reasons. The temporary bitmap is then mapped to the

screen using the Pixel Shader.

The render loop consists of the following five pipe-lined

major steps referenced as 4.1 to 4.6 in Fig. 2. Note that

the corresponding sections and subsections are indicated

in the parentheses.

Step 1. Compute the vanishing point of all concentric

plane’s around the down vector on the CPU. As shown in

Fig. 1, the vanishing point vp is the intersection of the

screen plane and Down-vector. The vanishing point

needs to be computed first (Section 4.1), before the

concentric planes are computed (Section 4.2).

Fig.1: We raycast the scene in planes perpendicular to the x-z-plane.
Each plane maps to the screen as a single line.

Fig.2 Pipeline: Everything except plane parameters is computed by
the GPU. The numbers used in the figure link to the corresponding
sections in this paper.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

4

Step 2. Compute the concentric plane parameters on the

GPU: Each concentric plane’s parameters, which are

needed for the rendering process, are computed on the

GPU (Section 4.3).

Step 3. Render the planes on the GPU: In each concentric

plane, a ray is cast in the x-z plane from the viewpoint’s

x-z-coordinates to the maximal view-distance. For each

x-z-position, the corresponding column of all RLE

elements is rasterized from top to bottom for the selected

LOD (Section 4.4.1) at this distance. For each RLE

element, we first perform the projection of the

coordinates to the ray-buffer (Section 4.4.2), then,

culling is performed (Section 4.4.3). Finally, the element

is rasterized as a textured line in the ray-buffer (a

temporary bitmap) (Section 4.4.4).

Step 4. Display the temporary bitmap on the screen: The

GPU-Pixel Shader is used to rearrange the rows of the

temporary texture to a radial pattern of straight lines

centered at the vanishing point on the screen (Section

4.5).

Step 5. Improving quality:

In the post-processing step, smoothing of voxels is

performed to reduce their blocky appearance while anti-

aliasing is included to further improve the rendering

quality (Section 4.6).

In order to allow light-calculation without storing normal

vectors inside the RLE volume data, we included a

special method to recover the normal vectors from the

depth buffer (Section 4.6.3).

3. Pre-Processing

3.1 Organization

The original source data to be visualized can either be

volume data or polygon data. In case of polygonal data,

the voxelization is simply done by rasterizing each

triangle as voxels into volume data. As described

earlier, we need to compress the voxelized data in the

vertical (y-axis) direction from top (large y coordinates)

to bottom (small y coordinates) using run-length

encoding (RLE). More specifically, each vertical RLE

column is compressed separately and referenced by one

pointer of a two-dimensional lattice placed in the x-z

plane, where the scale-factor of the lattice for the x and z

directions are normally uniform, respectively. As

shown in Fig. 3, not all the voxels of a solid volumetric

object is run-length-encoded. To avoid unnecessary

memory consumption, only voxel surface data is RLEed,

while occluded voxels in the inner area are removed, i.e.,

not RLEed. Section 3.2 elaborates on the specific data

structure of the RLEed voxel data.

3.2 Data Structure

The data structure of the voxel data should be able to

utilize GPU’s performance as much as possible, and it

has therefore been optimized based on statistical

evaluations of experimental results.

As shown in Fig. 4, the entire data structure basically

consists of two parts: the pointer map and the RLE

columns. Each element of the pointer map (the lattice

in the x-z plane) stores three different variables: the

pointer to its corresponding RLE column buffer

(described below) the number of RLE elements (defined

below) included in that RLE column as well as the first

(top-most) RLE element, consisting of “skipped voxels”

and “drawn voxels”. This paper defines an RLE

element as a series of sequential skipped voxels and

sequential drawn voxels, where a skipped voxel

corresponds to an invisible voxel that is not stored, and a

drawn voxel corresponds to a voxel that is stored in the

RLE structure with RGB color data. For example, in

the decoded voxel-space illustrated in the right side in

Fig. 4, white voxels indicate skipped voxels and colored

voxels indicate drawn voxels, respectively. In the left-

most voxel column, the two voxels from the top are

skipped (not drawn), and just below there is one

Fig.3: Pre-Processing: The initial volume data (left), then the surface in
the center and the run-length-encoding of opaque segments on the right.

Fig.4: Data structure: The RLE data structure consists of a 64 Bit
pointer-map referring to the RLE columns. Each RLE column consists
of the RLE elements array and the depending color array.

IEICE TRANS. ELECEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated StructuresTRON., VOL.XX-X, NO.X XXXX

XXXXEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated Structures

5

(colored) drawn voxel. Therefore, “2” and “1” are

stored in the “skipped voxels” field and “drawn voxels”

field in the pointer map element of the RLE structure in

the left side, respectively.

As shown in Fig. 4, the RLE column’s buffer, which is

referenced by the pointer of an element of the pointer

map, stores the numbers of the skipped voxels and drawn

voxels of the second to the m-th RLE elements, where m

is equal to the number of the RLE elements stored in one

column, the element of the pointer map. In addition,

the RLE column’s buffer stores the color for each drawn

voxel in the order of the voxels’ appearance in the RLE

column.

To achieve efficient computation by GPU, the number of

memory accesses has to be minimized. We therefore

store 64 bit elements in the pointer-map, as 64 bit is the

largest amount of memory that can be pulled in one read

by the GPU. Note that one 64-bit element includes all

the data required to test the visibility of the first

(topmost) RLE element. This strategy increases the

rendering performance (speed) particularly for large

outdoor environments and landscape-like scenes with

hills and mountains, because one memory read is

sufficient to test the visibility for approximately 90% of

all rasterized elements according to our preliminary

studies.

3.3 Level-of-Detail Computation

As described in Sections 1.3 and 2, the individual RLE

data for each level of detail is obtained in advance prior

to the visualization process. We apply the idea of

texture mip-maps to the original RLEed voxel data and

generate RLEed mip-volumes. The original RLEed

voxel data has the highest resolution and is used for the

LOD that corresponds to the range closest to the view

point. As the distance from the viewpoint gets larger,

RLEed voxel data with lower resolutions are used.

More specifically, suppose that lev denotes a level of

detail, where lev ranges from 1 (highest resolution) to L

(lowest resolution); the size (length of a side) of one

voxel in the level lev (≧2) is twice as large (long) as that

in the level lev-1, where linear down-sampling is applied

to the voxel data in the level lev-1 so that the voxel data

in the level lev is obtained. For example, an original

volume of 16x16x16 has four mip-volumes: 8x8x8,

4x4x4, 2x2x2 and 1x1x1. As described in the

following, the resolution is dynamically chosen by the

visualization process, depending on the distance to the

viewpoint.

4. Rendering

The rendering for each frame consists of multiple steps,

as displayed in Fig.2 and described in Section 2.

4.1 Vanishing-Point

We first compute the vanishing point vp, the point at

which all the concentric planes meet in the screen plane

(see Fig.1). Each plane is projected to the screen as one

straight line and all the lines meet at the vp. The

vanishing point can easily be obtained by intersecting the

vertical line that is parallel to the y-axis and passes

through the viewpoint with the screen-plane as follows.

 (1)

where d denotes the distance between the camera origin

(view point) and screen-plane, and αp represents the
camera's pitch angle, which is defined as the rotation

around the horizontal axis (the x-axis) of the camera

coordinate system. A pitch angle of zero means that the

optical axis of the camera is horizontal. The vanishing

point is projected to the screen space by the following

equation:

 (2)

where vpscreen represents the projection of vp to the

screen space, Acam represents the 4x4 camera matrix.

Each plane intersects the screen as one line originated in

vpscreen (Fig.1).

4.2 Concentric Planes

Since each plane is projected to the screen as one line

that is originated in vpscreen, we need to focus on

achieving a complete coverage of the screen by the lines

originated in vpscreen. To achieve this, as shown in Fig. 5,

we split the screen into four segments, where the

Fig.5 Screen segmentation: VP represents the vanishing point while
Seg 1..4 refer to the four segments.

0

1
sin()

0
p

d
vp

α

 
− = ⋅ 

  

screen camvp A vp= ⋅

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

6

borderlines between adjacent segments meet at vpscreen,

and the angle between adjacent borders is 90 degrees.

We texture each line included in the left and right (with

respect to vpscreen) segments in the horizontal direction

and in the upper and lower segments in the vertical

direction. The number of lines included in each

segment depends on the number of pixels on the screen

border in this particular segment. This implies that

each pixel in the screen border of a segment should be

the end of a line (projected plane), whose another end is

vpscreen. We can calculate the number of planes (lines)

as indicated below:

(3)

where npi denotes the number of planes for a given

segmenti, borderi denotes one of the four borders of the

screen, and dist(…) indicates the computation of the

distance in pixels between vpscreen and borderi. The

parameters vpscreen and npi, which are computed by CPU,

are transferred to the GPU for the subsequent

computations.

4.3 Plane Parameters

As described in Section 2, all the calculations described

in the rest of Section 4 are executed on the GPU in a

parallel manner by using multiple threads. The number

of simultaneous running threads depends on the number

of processing units of the underlying hardware. In our

case, 240 processing units are available.

The parameters to be computed for each plane are as

follows: the start and end points of the projected line in

the screen as well as the plane's rotation around the y-

axis. The start and end points are used for rendering

and clipping the projected RLE elements to the screen.

The rotation around the y-axis defines the orientation in

which we march through the RLE structure (Section 4.4).

4.4 Rasterizing the Ray Buffer

The RLE elements are visualized in two steps. In a first

step we rasterize the elements to a 2D temporary ray-

buffer, each row of which stores the projected result of

one concentric plane. In a second step, the temporary

ray-buffer’s contents are texture-mapped to the screen.

4.4.1 Traversal per Plane

To rasterize the RLE elements to the temporary ray-

buffer, we traverse the pointer-map, which is placed in

the x-z plane as shown in Fig. 1 and Fig. 4. As shown

in Fig. 1, the straight line in which a concentric plane

and the pointer-map (x-z plane) meet is considered. For

a point (an element of the pointer-map) on the straight

line, the RLE elements (voxels) visible from the

viewpoint are rasterized in the radial line in which the

concentric plane and the screen meet. This process

starts from the point just below the viewpoint and is

traversed till it reaches the point that corresponds to the

predefined maximal distance from the viewpoint.

During this traversal, culling, which is explained in

Section 5, is performed for the visibility check.

The traversal is not equidistant as it is often done in

volume visualization. As shown in Fig. 6, equidistant

traversal performs equidistant sampling of the pointer-

map’s elements on the straight line. This is simple, but

leads to errors in the visualization. Instead, we apply an

exact grid traversal, which correctly samples all the 2D

grid intersections during the traversal according to [4].

In Fig.6 we compare the visual results of the exact

traversal and the equidistant traversal. The exact

traversal requires slightly more computational effort, but

the result is significantly better.

During the above-mentioned traversal, LOD needs to be

switched according to the distance from the viewpoint.

This paper selects LOD according to the distance

between the viewpoint and a point on the line in which

the concentric plane and the x-z plane meet. Suppose

pd is a predefine distance along the line. From P0, the

point below the view point, to P1, which is away from

P0 by pd on the line, the RLE data (voxels) with the

highest resolution is used for the rasterization; similarly,

from P1 to P2, which is away from P1 by pd, the second

highest resolution is used, etc.

4.4.2 Projecting RLE Elements to Ray-Buffer

As mentioned earlier, the visible part of each RLE

element is rasterized to the temporary buffer as a

textured line, where the x, y and z coordinates of the

start-point ps and the end-point pe are the 3D world

Fig.6: Ray sampling: On the left side we can see the simple equidistant
raycasting while the more advanced and accurate one is shown on the
right.

2 (,), [1..4]i screen inp dist vp border i= ⋅ ∈

IEICE TRANS. ELECEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated StructuresTRON., VOL.XX-X, NO.X XXXX

XXXXEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated Structures

7

space coordinates of the particular RLE element. We

project ps and pe into the screen-space using the camera

matrix Acam as follows:

(4)

In the formula, pscam and pecam contain the x, y and z

coordinates of the ps and pe in the camera space. The

camera space is defined as orthonormal-basis, where the

origin is placed at the view-point, the z-axis a straight

line from the viewpoint towards the center of the screen,

the x-axis a straight line towards the origin and parallel

to the upper and lower screen border and the y-axis a

straight line towards the origin and parallel to the left and

right screen border. The variables psscreen and pescreen are

the two dimensional ray-buffer coordinates of ps and pe.

As described in Section 4.2, either the horizontal (x) or

vertical (y) component of the start and end coordinates is

used for rasterizing RLE elements into the ray-buffer. In

the ray-buffer, the projection of each plane is represented

as one column, as shown in the upper half of Fig.7.

Therefore, either the horizontal (x) or vertical (y)

coordinates of the start and end-point are used to define

the vertical 1D position inside the column of the ray-

buffer. In Fig.7, Segments 1 and 3 use the horizontal

(x) coordinate, while Segment 2 and 4 use the vertical

(y) coordinate of psscreen and pescreen. After the start and

end positions inside the column are determined, visibility

culling is performed (detailed in Section 4.4.3), before

the textured rasterization is done (Section 4.4.4).

4.4.3 Culling

As described in Section 4, culling needs to be performed

to only render the visible parts of RLE elements and

efficiently skip RLE elements that are invisible. This

paper uses three culling methods including novel and

known methods. It is possible to combine these culling

methods for optimal performance. However, utilizing

all the algorithms simultaneously is not efficient due to

mutual interference. It is efficient to use the floating

horizon algorithm together with shared memory culling

or per pixel forwarding. However, shared memory

culling and per pixel forwarding interfere, because they

are both executed on a per-pixel-level.

4.4.3.1 Modified Floating Horizon

We utilize the well-known floating horizon algorithm,

which has already been used in the original voxel

forward projection algorithm [1]. The floating horizon

algorithm does not conflict with the other culling

methods we use and can hence be used in combination

with all the other culling methods. The algorithm

works as follows:

For each rendered plane, we store two offset values: one

start and one end-offset along the projected line in the

screen, defining the bounds of the render-able area.

Once one RLE element that touches the start or end

offset is drawn, we update this particular offset to narrow

the bounding area along the line, which allows to cull

more RLE elements. Using the floating horizon

algorithm is possible, because we render opaque scenes

from near to far, which means that every pixel is drawn

only once.

However, the basic floating horizon algorithm only

works well if we have a height-map like scene such as

mountains. In case of complex scenes such as a tree,

we have the problem of unconnected segments rasterized

along the line, which cannot be handled efficiently by the

original algorithm. We therefore introduce a small but

significant modification to the original method so that

good performance is achieved even in complex scenes.

The modification is as follows: after one RLE element is

rasterized that touches either border, we update the

Fig.7: Ray mapping: The upper part shows the temporary buffer with
the four segments. The lower half demonstrates how the segments are
mapped to the screen.

. 1

. .

. 1

. .

cam cam

cam cam

cam

screen

cam cam

cam

screen

cam cam

ps A ps

pe A pe

ps x
ps

ps y ps z

pe x
pe

pe y pe z

= ⋅

= ⋅

 
= ⋅ 

 

 
= ⋅ 

 

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

8

offsets and further test pixels next to the new offsets if

they have been drawn already. If they have been drawn

already, we further narrow the bounds. Depending on the

scene, this modification accelerates the culling process

up to two times.

4.4.3.2 Shared Memory

The shared-memory culling algorithm takes advantage of

the fact that our method draws every pixel in the screen

only once. This means a binary map suffices to store

the visibility information in the screen. This map is so

small that it is fitted entirely into the graphic cards

shared memory. Our target hardware, the NVidia GTX

series, provides two main types of memory: Global

memory and shared memory. The difference between

both types is that a memory access to global memory

consumes about 300 processor cycles, while an access to

the shared memory only requires one cycle. Therefore,

using a binary visibility map stored in the shared memory,

we can apply per pixel culling very fast without

accessing the slower main memory. Shared memory

culling accelerates the rendering speed by 40% to 140%,

depending on the scene.

4.4.3.3 Per Pixel Forward

Lacroute’s culling based on per pixel forwarding [3] is

slightly slower and more complex than the previously

described shared memory culling, but it is needed for

screen-resolutions where the number of simultaneously

processed pixels of the screen exceeds the number of bits

available in the shared memory. In our case, this occurs

at screen resolutions with more than 900 pixels in the

vertical direction.

The per-pixel forward algorithm works as follows: for

each pixel in the temporary buffer we store a relative

jump offset. This offset is set to zero in the beginning

and is updated once an RLE element is drawn as shown

in Fig.8. Since relative jumps help to skip pixels

efficiently, we achieve a speed-up of approximately 1.08

to 2.0 times, which is significantly faster than the

floating horizon algorithm alone, but approximately 20%

slower compared to shared-memory culling.

4.4.4 Drawing RLE elements as textured Lines

Each RLE element is rasterized into one or multiple

columns of the temporary ray buffer as a texture mapped

line, using the coordinates of ps and pe as the vertical

positions in the column. Using texture mapping

significantly speeds up the overall computation, because

voxels are rendered as a group rather than individually

(the data structure is described in Section 3.2). To

achieve a proper appearance, we apply perspective

correct texture mapping. Simple non-perspective

texture mapping interpolates the 2D texture coordinates,

which leads to an approximated but wrong visual

appearance. Perspective correct texture mapping uses

not only the 2D texture coordinates but also the depth

coordinate (z), which leads to a correct result.

4.5 Displaying the Ray-Buffer

We can map the texture stored in the temporary ray

buffer efficiently to the screen using the graphics card’s

Pixel-Shader. To achieve this, we have to calculate the

source (U,V) texture coordinate in the ray buffer for each

target pixel (xs,ys) on the screen. The mapping is applied

in a concentric manner with respect to the vanishing

point vp as shown in Fig.7. We define the formula to

compute the source (U,V) texture coordinates inside the

ray-buffer by Eq.(5) as follows.

(5)

In the formula, U defines the horizontal coordinate inside

the ray-buffer, V the vertical coordinate, xs the horizontal

screen coordinate, ys the vertical screen coordinate and s

the start-offset that is added for the corresponding

segment of the ray-map. The indices of U,V and s

represent the segment index as numbered in Fig 5. The

valid range of the texture coordinates (U,V) as well as

the screen coordinates (xs,ys) ranges from 0 to 1.

4.6 Quality Aspects

As shown in the flow-chart of Fig.2, the quality of the

image rendered in the screen is improved at the final

stage of the render pipeline. Since we use conventional

texture mapping functions of the graphics card, texture

filtering, which is natively supported by every GPU, can

be applied without performance impact to improve the

quality. We employ two methods to handle this issue:

smoothing and anti-aliasing. The combination of both

algorithms can significantly improve the rendered image

quality.

Fig.8: Skip-Buffer: Each element in the skip-buffer stores the number
of drawn pixels that can be skipped until a free pixel is found.

()

()

2,4 2,4

2,4

1,3 1,3

1,3

U xs vp.x ys vp.y s

V ys vp.y

U ys vp. xs vp. s

V s vp.

y x

x x

= − ⋅ − +

= −

= − ⋅ − +

= −

IEICE TRANS. ELECEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated StructuresTRON., VOL.XX-X, NO.X XXXX

XXXXEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated Structures

9

4.6.1 Smoothing

We apply smoothing as a post-process in image-space by

the Pixel Shader. We developed a special smoothing

method that achieves two types of smoothing in one

shader pass: Smoothing of voxel silhouettes and

smoothing of voxels close to the camera themselves.

Figure 9 shows an example of the result of this method.

The smoothing contains of multiple steps, illustrated in

Fig.10. Step a) shows the target pixel in the original

image. In step b.), we search the minimum depth of

eight pixels that lie in a circle around the target pixel.

The radius is fixed for this operation. In step c) we apply

a box filter for 5x5 pixels. The scale factor of the box

filter is determined by the previously computed

minimum-depth. For the smoothing, we only include

pixels, which are within a limited depth range near to the

minimum depth. As a result, we can see that both, the

silhouette and the inner region in our example has been

smoothed well in step d).

4.6.2 Anti-Aliasing

To further improve the quality, we apply full-screen anti-

aliasing (AA) by rendering the scene with a higher

resolution and down sampling the rendered image so as

to obtain the target resolution. Figure 11 compares

three configurations: No AA, 2x1 pixels AA and 2x2

pixels AA. Obviously, 2x2 pixels AA and 2x1 pixels AA

give the best and second best quality.

4.6.3 Screen Space Normals (SSN)

To visualize large data sets such as the Richtmyer-

Meshkov on consumer graphics cards with only 256MB

ram, we can recover (approximate) the surface normal n

for shading from a few samples in the depth buffer by Eq.

(6).

(6)

(,)

(1/)

(1/)

(,) /

(,) /

(1,0,) (0,1,)

s s s

s s

s s

x s s s

y s s s

x y

z Depth x y

x x rnd z

y y rnd z

dz z Depth x x y y x

dz z Depth x x y y y

n dz dz

=

∆ = −

∆ = −

= − + ∆ + ∆ ∆

= − + ∆ + ∆ ∆

= ×

where xs, and ys represent the horizontal and vertical

coordinates of a pixel in the screen, respectively, Depth

(.) represents the depth of the pixel (argument) in the

depth-buffer, rnd is the random function to achieve an

averaged result for multiple samples, x for computing n

is vector cross-product. Note that Eq. (6) indicates that

the sample region needs to be reciprocal in size to the

sampled depth value zs of the pixel (xs, and ys). In case

the pixel is close to the camera, we need a large region

and vice versa.

To achieve a satisfying result in our implementation, at

least 16 samples from the depth-buffer should be used.

Since computing a random value by GPU is slow, we

sample a random value from a texture as an alternative.

As SSN and SSAO [12] sample the depth-buffer in a

similar way, it is possible to efficiently combine both

methods in only one shader-pass. An example of the

result is demonstrated in Fig.12.

5. Experimental Results

We conducted experiments with multiple scenes to

evaluate our algorithm in terms of rendering speed,

memory consumption and quality. The scenes used for

testing are shown in Fig.13. Our experimental system

consists of a Pentium-D 3.0 GHz Processor with 1 GB of

RAM and a GeForce285 GTX (1024MB) graphics board

with 240 stream processors. As shown in Fig. 2, we use

Fig.9: Smoothing: The left image shows the basic rendering. To
improve the rendering quality, we smooth the silhouette (middle
image) and the interior part as well (right).

Fig.11: Anti-aliasing (AA): We investigated three quality levels: No
AA (left), 2x1 AA (center) and 2x2 AA (right).

Fig.10: Smoothing steps: a.) Target pixel b.) Find minimum depth (Z)
c.) Box-filter with threshold; scaled according to the minimum depth
d.) Result

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

10

NVidia CUDA to compute the raycasting part of the

algorithm, while texture mapping the temporary ray-

buffer and the post-processing are executed in the Pixel-

Shader. The render-resolution for all the tests is set to

1024x768 pixels, while the AA setting for improving

quality is 2x1, which provided the best tradeoff between

quality and performance.

Table 1 shows the result of benchmark tests. Bits per

voxel indicates the number of bits required for storing

the position information of one voxel, taking the pointer-

map and mip-maps into account as well. The bits used

to store the position of one voxel range from 10.83 to

26.3, which is significantly less than a pointer-based

octree. The pointer-based octree requires 32 bit only

for the tree leaves, which sums up to about

32*(1+1/8+1/64+..)=36.8 bits for the entire tree.

However, in some scenes our algorithm requires more

memory than splatting based algorithms such as QSplat,

which only utilizes 13 bits per leaf. As described

earlier, the accuracy of splatting-based methods is

limited to the size of the splats; therefore, in particular,

unreasonably sharp edges tend to degrade the image

quality.

To measure and evaluate the rendering speed, we first

investigate the maximum polygon performance of our

graphic card. In case of rendering as a quad by two

textured triangles, 350 Million triangles per second are

the limit of our graphic card for rendering triangle strips

while splatting reaches 100 Million primitives (splats)

per second. In Table 1 we can see that the proposed

algorithm achieves a high count of processed RLE

elements per second (Speed, Elems/s), ranging from 112

to 365.8 Million RLE elements per second. This speed

is twice to three times as fast as basic splatting and

surprisingly outperforms even the default OpenGL

rendering pipeline with 350 Million triangles/s in certain

cases. Further information included in the table are the

total number of RLE elements inside the view frustum

(RLE Elem total), the number of RLE Elements that

have passed the culling test (RLE Elements, ren), frames

per second (fps) and the resolution of the single dataset

(Resolution). For testing the performance in case of

large outdoor areas, we created scenes containing more

than one thousand instances of the same data set for the

procedural scene and the bonsai scene. The maximal

view distance has been set to 40.000 voxel in both cases.

The large outdoor scenes of the bonsai and the

procedural dataset have contributed to table 1 as well.

They have been used in all our tests, to evaluate the

performance, the compression ratio and the quality as

well.

To compare the performance of our GPU implementation

to the CPU, we implemented our method also for the

CPU as well. As a result, it turns out that the GPU

implementation tested on an NVidia GeForce 285 is

three to seven times as fast as the CPU implementation

executed on a test system with an Intel Core2 Quad

Q6600 CPU with 4x3 Ghz and 1GB ram. The GPU

outperformed the CPU by factor three for light scenes

without AA and factor seven for complex scenes, with

AA enabled, where the scenes used for testing are shown

in Fig.14.

We further evaluated the render speed in regard to the

image quality by measuring the performance for different

quality settings. We compared no anti-aliasing, 2x1

anti-aliasing and 2x2 anti aliasing (Fig. 11). If the

speed for the no anti-aliasing is 100%, 2x1 AA and 2x2

AA achieve 104% and approximately 80%, respectively.

The increase in speed for 2x1 AA might be explained as

Fig.12: Normals: The depth-buffer can successfully be utilized to
compute normal vectors on the fly (Left). These can be utilized for
shading and further enhanced with screen-space-ambient-occlusions
(Right).

Fig.13: Test scenarios: Handcrafted mansion (up left), Bonsai forest
with 3000 trees (upright), Happy Buddha (middle left) and a
Procedural Landscape with about 4000 visible trees (middle right), the
Stanford Dragon and the Stanford Bunny.

IEICE TRANS. ELECEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated StructuresTRON., VOL.XX-X, NO.X XXXX

XXXXEfficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data with Fine and Complicated Structures

11

better coalescence for reads from GPU memory. On the

GPU, coalescent memory reads are very important. It

also means that half the GPU’s processing units are idle

in case of the no AA configuration, because 2x1 AA

requires two times as many floating-point operations as

no AA. As a result of this experiment, the main

limiting factor of our algorithm is the memory-

bandwidth. In computer graphics, every rendering

algorithm’s speed is either limited by the speed of the

processing unit (here the GPU) or the speed of the

memory. In out case, the speed of the memory is the

limitation. We already reduced the memory bandwidth

by employing multiple culling algorithms – yet it still

remains the limiting factor. To further improve on that,

additional compression schemes might be helpful.

As shown in Fig. 15, our algorithm is able to achieve

high quality renderings for a scene with many fine

structures. To facilitate the comparison, we render the

result using 2x2 AA in the left half and no AA in the

right half.

Finally we visualized the Richtyer-Meshkov data set,

which is one of the largest data sets, with a resolution of

2048x1920x2048. The size of the RLE compressed

data of the surface at iso-value 60 is 198 MB including

mip-maps. This results in a compression factor of 5:1

in regard to the binary volume data. As this particular

data set is very large, we do not store color or shading

information. For the visualization we compute the

normal vectors on the fly from the screen-space, as well

as approximated ambient occlusions. The visualization

speed that we achieved at a resolution of 1024x768 is

interactive frame-rates: 15 fps for rendering a single

instance of the data-set (Fig.14) and 10 fps for rendering

the data-set repeatedly as shown in Fig. 16.

6. Conclusions

This paper presents an efficient adaptation of the voxel

forward projection algorithm to utilize recent graphics

hardware. Several improvements to speed up the

algorithm, optimize memory consumption, as well as

improve the rendering quality were proposed. Initially,

the surface data is run-length-encoded to allow fast

decoding for rendering on the GPU. According to [8],

RLE is the second fastest algorithm to decode lossless

compressed volume data.

Experiments using different scenes show the following

results. The proposed algorithm is up to seven times as

fast as the equivalent CPU implementation, up to three

times as fast as basic splatting and even surpasses the

performance of the default OpenGL pipeline in terms of

primitives per second for some of our test scenes. We

were able to further visualize large and highly detailed

Table 1: Performance: We evaluated the performance of our
algorithm based on various scenes. Anti-aliasing is set to 2x1.

Fig.15: Quality: To show the ability to render at high quality, we
created a complex test scene with many fine details rendered at
512x384 pixel and 2x2 AA as well as no AA for a comparison. Note
that 2x2 AA successfully removes aliasing artifacts for distant pixels.

Fig.14: GPU vs CPU: We compared our GPU implementation running
on an NVidia GTX 285 to the CPU (Intel Q6600 4x3Ghz).

Fig.16: It is possible to render the complete Richtmyer-Meshkov dataset
more than 100 times at interactive rates at a 1024x768 screen resolution.
For the shading, we utilized a combination of screen-space-ambient-
occlusion and screen-space normals.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

12

data sets on a single NVidia GTX 285 GPU at interactive

frame-rates.

Furthermore, our method is very memory efficient: i.e.,

the storage required for one voxel during run-time is

only 10.8 to 26 bits (Table 1). This is on average slightly

more than Qsplat, which achieves 13 bits, but has

significantly higher quality (Fig.9 and Fig.15). Also, the

storage per voxel is significantly less than conventional

tree-based ray casting (such as octree), which consumes

more than 32 bits for referencing each node.

In terms of quality, we achieve sub-pixel accurate

rendering by employing 2x1 full-screen anti-aliasing at

full speed. Using 2x1 AA does not decrease the speed

compared to not using AA.

Although the results are very promising, remaining

issues include adding support for streaming data into the

GPU memory on demand. This allows for rendering

scenes that do not fit inside the graphic card’s memory.

Acknowledgements

We would like to thank Ken Silverman for his supporting

help during the initial phase of this research, Mark

Duchaineau for providing us the Richmyer-Meshkov

instability data-set for testing, NVidia for sponsoring our

project with graphics-hardware and finally the Honjo

International Scholarship Foundation for making the

whole research possible.

References

 [1] John R. Wright and Julia C. L. Hsieh, "A voxel-based, forward

projection algorithm for rendering surface and volumetric data",

Visualization'92, pp.340--348, 1992

 [2] Ken Silverman, Voxlap engine, 1999-2003,

http://advsys.net/ken/voxlap.htm, visited Feb.2010

 [3] Philippe Gilbert Lacroute, "Fast volume rendering using a shear-

warp factorization of the viewing transformation", SIGGRAPH

'94, pp.451--458, 1994.

 [4] John Amanatides, Andrew Woo: “A fast voxel traversal algorithm

for ray tracing”, Eurographics’87, pp.3-10, North-Holland, 1987

 [5] T.J. Wright, “A Two-Space Solution to the Hidden Line Problem

for Plotting Functions of Two Variables,” IEEE Trans.

Computers, vol. 22, no. 1, pp. 28-33, Jan. 1973.

 [6] NVidia Corp, “Compute Unified Device Architecture” (CUDA)

http://developer.nvidia.com/object/cuda.html

 [7] Visualization Lab, Center for Visual Computing, SUNY Stony

Brook: Voxel-Based Flight Simulation

http://www.cs.sunysb.edu/~vislab/projects/flight/, visited

Feb.2010

 [8] Philippe Komma and Jan Fischer and Frank Duffner and Dirk

Bartz: “Lossless Volume Data Compression Schemes, SimVis

2007, pp. 169-182, 2007

 [9] Szymon Rusinkiewicz and Marc Levoy:” QSplat: a

multiresolution point rendering system for large meshes”,

SIGGRAPH '00, pp. 343-352, 2000

 [10] Enrico Gobbetti and Fabio Marton:"Far voxels: a multiresolution

framework for interactive rendering of huge complex 3D models

on commodity graphics platforms",SIGGRAPH '05, pp. 878--

885,2005

 [11] Crassin, Cyril and Neyret, Fabrice and Lefebvre, Sylvain and

Eisemann, Elmar:"GigaVoxels : Ray-Guided Streaming for

Efficient and Detailed Voxel Rendering", ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (I3D),

Feb.2009, to appear

 [12] Martin Mittring: "Advanced Real-Time Rendering", 3D Graphics

and Games Course, Chapter 8, pp.113-115, SIGGRAPH 2007

 [13] Aaron Knoll, Ingo Wald, Steven Parker, Charles

Hansen:"Interactive Isosurface Ray Tracing of Large Octree

Volumes", IEEE Symposium on Interactive Ray Tracing, pp.115-

124, 2006

 [14] T.Todd Elvins:"A survey of algorithms for volume visualization",

ACM SIGGRAPH 1992, Vol.26 , Issue 3, pp. 194 - 201, 1992 ,

ISSN:0097-8930

 [15] The Megatexture technology, interview with John Carmack, May

1st, 2006. Link visited on 2010/01/27:

http://www.team5150.com/~andrew/carmack/johnc_interview_2

006_MegaTexture_QandA.html

 Sven Forstmann. Sven Forstmann was born

in Konstanz, Germany on Jan. 26th 1977.

He was awarded an M.S. degree in computer

science from Karlsruhe University in the

year 2004. From 2004 to 2005 he was a

special research student at the GITS faculty

of the Waseda University in Tokyo, before

he began a Ph.D course at the GITS faculty

in 2005. His specializations are in the areas

of Computer Graphics and Image

Processing.

 Ohya, Jun: Jun Ohya received B.S., M.S.

and Ph.D. degrees in precision machinery

engineering from the University of Tokyo,

Japan, in 1977, 1979 and 1988, respectively.

He joined NTT Research Laboratories in

1979. He was a visiting research associate

at the University of Maryland, USA, from

1988 to 1989. He transferred to ATR,

Kyoto, Japan, in 1992. Since 2000, he has

been a professor at Waseda University,

Japan. He was a visiting professor at the

University of Karlsruhe, Germany, in 2005.

His research areas include computer vision,

computer graphics and virtual reality. Dr.

Ohya is a member of IEEE, IPSJ and VRSJ.

