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SUMMARY This paper proposes a GPU based method that can 

visualize voxelized surface data with fine and complicated features, has 

high rendering quality at interactive frame-rates, and provides low 

memory consumption.  The surface data is run-length-encoded (RLE) 

for each level-of-detail.  Then, the loop for the rendering process is 

performed on the GPU for the position of the viewpoint at each time 

instant.  Raycasting of the scene is done in planes, whereas each plane 

is perpendicular to the horizontal plane and passes through the 

viewpoint. For each plane, one ray is cast to rasterize all RLE elements 

intersecting this plane - starting from the viewpoint and ranging to the 

maximum view distance. The rasterization process projects each RLE 

element passing the occlusion test onto the screen at a level of detail 

that decreases with distance of the RLE element from the viewpoint. 

Finally, smoothing of voxels in screen-space and full-screen anti-

aliasing are performed. To provide lighting calculations without storing 

the normal vector inside the RLE data structure, our algorithm recovers 

the normal vectors from the rendered scene’s depth-buffer. After the 

viewpoint changes, the same process is re-executed for the new 

viewpoint. Experiments using different scenes show that the proposed 

algorithm is faster than the equivalent CPU implementation and other 

related methods.  Our experiments further prove that our method is 

very memory efficient, and achieves high quality results. 

key words: Volume data, Voxels, Raycasting, Splatting, View-Transform, 

Run-Length-Encoding.. 

1. Introduction 

1.1 Background  

Traditionally, polygon based rendering has been more 

efficient than point primitive (splatting) or volume-pixel 

(voxel) based rendering. However, polygonal models are 

becoming more and more detailed, leading to dense 

meshes where each polygon merely covers a few pixels 

on the screen. Once polygonal meshes become so dense, 

rendering results by polygons, point primitives or voxels 

do not show significant differences in quality and 

rendering speed. This means that voxel and point-based 

rendering methods gain more importance. This is 

because as the rasterized size of voxels, splats and 

polygons become similar, rendering a voxel or splat 

employs considerably less computation than rendering a 

polygon.  

Previously, an advantage of polygon-based rendering 

was the ability to use repeating textures to save memory. 

Voxel and splat based rendering inherently use unique 

texturing, so there is no benefit in memory consumption 

from using repetitive texturing. However, as there is a 

recent trend to use unique, non-repeating, textures for 

each object on the screen (Megatexture technology [15]), 

the memory consumption for polygon-based rendering 

sharply increases. Therefore as this trend continues, the 

memory consumption of voxel and splat-based rendering 

becomes comparable with unique textured polygon 

rendering. 

 

Next, we want to compare the use of level of detail 

(LOD) between voxels and polygons. LOD is important 

to accelerate the rendering and decrease the run-time 

memory consumption. For polygonal objects, LOD is 

usually implemented as follows. First, a set of polygonal 

objects with different levels of detail is created by the 

artist. Then, at run-time, the proper LOD of the object is 

selected according to the distance from the object to the 

camera and the object is visualized on the screen. Voxels 

can handle LOD more efficiently than polygons, because 

voxel data can be easily down-sampled for 

representations in lower details. Therefore, it is not 

necessary for an artist to design separate models of the 

same object for each level of detail, the different levels 

of detail can be generated automatically. 

The final advantage of voxels over polygons we wish to 

mention is, Boolean operations can be applied much 

easier to voxels compared to polygons. 

Despite all these advantages of voxels over polygons, it 

should be noted that deformations and skeletal 

animations in real-time still pose a challenge for voxel-

based representations. 

Point and voxel based rendering are very similar. 

However, the major difference between voxel based 

rendering and point-based rendering is that voxels 

occupy a well-defined cubic portion of volume in space, 

while point-based methods approximate the geometry 

usually by 2D splats. 

For reasons related to the fact that splats are 2D 

approximations of a 3D object, there have to be several 

exceptions implemented for a point-based algorithm to 

be robust. Voxel based algorithms are generally more 

robust without the need for such exceptions, because a 

voxel covers a well-defined portion of space in 3D. 

1.2 Related Work 

We split the related methods into three groups: rendering 
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voxel volume data by using Shear-Warp [3], raytracing 

based algorithms and point based rendering. We will 

briefly overview the most widely used methods in each 

group and mention their key issues.   

Shear-Warp [3] renders RLE volume data in a front to 

back manner to a temporary texture. The temporary 

texture is then mapped to the screen. It has been proven 

to be very fast for dense, semi-transparent volume data. 

However, it requires storing three copies of the volume 

data in memory, as the data is run-length-encoded for 

each axis independently: x, y, and z. 

 

Raytracing methods use tree-like structures such as 

octrees, KD-trees and bounding volume hierarchies 

(BVHs) to compress the voxel data and accelerate the 

raytracing process.  An octree-based raycaster proposed 

by A.Knoll at.al. [13] uses a pointer-based octree 

structure so that large iso-surfaces can be raycast 

interactively with high quality. The pointer-based octree 

structure is advantageous in that spatial queries can be 

made very efficiently. However, it needs to store at least 

one pointer (usually 4 bytes) for each node, which is 

more than two times the memory requirement of position 

data in typical RLE scenes. 

As a variant of raytracing methods, Gigavoxels [11] uses 

bricks of volume data in combination with octrees to 

store voxels for interactive raytracing.  The method 

suits well for raycasting large, semi-transparent volume 

data.  Its features include filtering for high quality, and 

streaming on demand from the hard-drive to the GPU or 

CPU for enabling data sets larger than the CPU or GPU 

memory.  However, it is not optimal for visualizing 

pure opaque surface data, because the used bricks store 

redundant transparent voxels as well, which increases the 

memory consumption. 

 

One of the most well-known point based rendering 

methods, Qsplat[9], inspired many other researchers to 

propose similar rendering approaches. As an evolution of 

Qsplat, FarVoxels[10] improved the basic point-based-

rendering by introducing a hybrid method that also 

utilizes polygonal rendering for geometries close to the 

viewpoint. However, as these methods employ either 

point-based rendering or a combination of point-based 

and polygonal-based rendering, they suffer from the 

earlier described disadvantages when compared with 

voxel-based rendering. 

1.3 Proposed Approach 

Since none of the related methods possess all of the 

following three properties: low memory consumption, 

high rendering performance (fast rendering) and optimal 

rendering quality, the purpose of our research is to find 

an optimal combination of all of the three technologies.  

Furthermore, we would like to improve the voxel data 

structure. We do not want to store the voxel’s surface 

normal along with the voxel data. However, we still want 

to be able to recover the normal vector for lighting 

calculations. More specifically, our method should 

achieve the following goals:   

 

(1) Highest quality of rendering voxel data by applying 

voxel smoothing and anti-aliasing.  

(2) Significantly lower memory consumption than other 

methods, which are able to achieve highest quality, such 

as raycasting.  

(3) High rendering performance even in complex 

environments at interactive frame-rates from arbitrary 

viewpoints. 

(4) Support for recovering the voxels’ surface normals 

from the depth buffer. 

 

Our proposed approach is based on the so-called “voxel-

based forward projection algorithm” developed by 

Wright et al. [1], which renders voxel data with lower 

memory consumption than the Shear-Warp algorithm.  

We further modified the original voxel based forward 

projection algorithm to deal with completely arbitrary 

voxel data, as is done in the unpublished work of Ken 

Silverman [2]. The original forward projection algorithm 

categorized the data into two groups: terrain, and objects 

that were placed on the terrain, such as trees and 

buildings. Each of these two groups of data had its own 

rendering technique. In [2] and in our approach, voxel 

data is stored in a uniform way as RLE data. An 

advantage of storing the data in a uniform way as 

opposed to categorizing the data into groups is, the data 

can be rendered using the same algorithm, hence 

reducing implementation complexity. 

 

In this paper, we intend to achieve our goals by applying 

the following novel improvements to the voxel-based 

forward projection algorithm: 

 

• Integrating the entire algorithm on the GPU 

• Adding two novel culling algorithms to prevent 

unnecessary processing of occluded RLE 

elements 

• Adding a novel smoothing filter for the removal 

of block-like artifacts of voxels close to the 

screen  

• Include the recovery of surface normals from 

the depth buffer as a rendering post process 

 

To accelerate the rendering process, our approach, for the 

first time, integrates the entire rendering algorithm on the 

GPU by using NVidia’s CUDA[6] and the Pixel Shader. 

Until recently, graphics hardware was incapable of 

supporting random writes, which are crucial for the 

proposed method.  

To improve the speed, we integrated three novel 

algorithms for the purpose of skipping occluded RLE 
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elements during rendering.  

In order to remove the blocky appearance of voxels near 

the camera, we implemented a novel voxel smoothing 

method that is performed on the GPU as a post-process.   

Surface normals for light calculations are normally saved 

in the voxel data structure. However, to save memory, 

our algorithm does not store the surface normals, but 

recovers them from the scene’s depth-buffer in real-time 

as a post-process. It is the first time that this post-process 

has been successfully implemented in real-time. Also, 

this is the first time that this process has been 

implemented on the GPU 

1.4 Organization 

The paper is organized as follows. Section 2 outlines the 

proposed method.  Section 3 explains the pre-

processing. Section 4 elaborates on the rendering by the 

GPU, Section 5 evaluates the proposed method 

experimentally, and Section 6 concludes this paper. 

2. Overview 

As shown in Fig. 1, the 3D surface voxel data exists in 

the x-y-z world coordinate system, where the x-z plane is 

the horizontal ground plane.   

As shown in Fig.2, the algorithm consists of a series of 

steps, starting with the pre-processing step and ending 

with rendering the scene and changing the viewpoint. In 

the pre-processing step, the voxel data is run-length-

encoded for each LOD in the vertical (y) direction.  It is 

important that the encoding direction is vertical, because 

this leads to a higher average speed of the algorithm for 

the general case, when the camera looks towards the 

horizon. The details of this pre-processing step are 

described in Section 3.  

As shown in Fig. 2, after copying the RLE data to the 

GPU’s memory, the loop for visualizing the RLE data 

from the viewpoint at each time instant starts. As can be 

seen in Fig. 1, our proposed method visualizes the scene 

in planes that are perpendicular to the x-z plane and 

share the straight line that passes through the viewpoint 

and is parallel to the y-axis (Down-vector).  Raycasting 

the RLE data in each concentric plane is done step-by-

step from near to far along the x-z plane, while the 

rasterization is done for each step in the vertical direction 

(parallel to the y axis) from top to bottom.  To be more 

specific, for each step in the x-z-plane, all the RLE 

elements in the corresponding column are rasterized by 

projecting them into the screen space. Since the 

projection of each concentric plane is a line slanted 

across the screen space, the results of rendering the 

planes are stored as temporary bitmap for performance 

reasons.  The temporary bitmap is then mapped to the 

screen using the Pixel Shader.  

The render loop consists of the following five pipe-lined 

major steps referenced as 4.1 to 4.6 in Fig. 2. Note that 

the corresponding sections and subsections are indicated 

in the parentheses.  

 

Step 1. Compute the vanishing point of all concentric 

plane’s around the down vector on the CPU. As shown in 

Fig. 1, the vanishing point vp is the intersection of the 

screen plane and Down-vector.  The vanishing point 

needs to be computed first (Section 4.1), before the 

concentric planes are computed (Section 4.2).  

 

Fig.1: We raycast the scene in planes perpendicular to the x-z-plane. 
Each plane maps to the screen as a single line.  

 

Fig.2 Pipeline: Everything except plane parameters is computed by 
the GPU. The numbers used in the figure link to the corresponding 
sections in this paper. 
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Step 2. Compute the concentric plane parameters on the 

GPU: Each concentric plane’s parameters, which are 

needed for the rendering process, are computed on the 

GPU (Section 4.3).   

 

Step 3. Render the planes on the GPU: In each concentric 

plane, a ray is cast in the x-z plane from the viewpoint’s 

x-z-coordinates to the maximal view-distance. For each 

x-z-position, the corresponding column of all RLE 

elements is rasterized from top to bottom for the selected 

LOD (Section 4.4.1) at this distance.  For each RLE 

element, we first perform the projection of the 

coordinates to the ray-buffer (Section 4.4.2), then, 

culling is performed (Section 4.4.3). Finally, the element 

is rasterized as a textured line in the ray-buffer (a 

temporary bitmap) (Section 4.4.4).  

 

Step 4. Display the temporary bitmap on the screen: The 

GPU-Pixel Shader is used to rearrange the rows of the 

temporary texture to a radial pattern of straight lines 

centered at the vanishing point on the screen (Section 

4.5).  

 

Step 5. Improving quality:  

In the post-processing step, smoothing of voxels is 

performed to reduce their blocky appearance while anti-

aliasing is included to further improve the rendering 

quality (Section 4.6). 

 

In order to allow light-calculation without storing normal 

vectors inside the RLE volume data, we included a 

special method to recover the normal vectors from the 

depth buffer (Section 4.6.3). 

3. Pre-Processing 

3.1 Organization 

The original source data to be visualized can either be 

volume data or polygon data.  In case of polygonal data, 

the voxelization is simply done by rasterizing each 

triangle as voxels into volume data.  As described 

earlier, we need to compress the voxelized data in the 

vertical (y-axis) direction from top (large y coordinates) 

to bottom (small y coordinates) using run-length 

encoding (RLE). More specifically, each vertical RLE 

column is compressed separately and referenced by one 

pointer of a two-dimensional lattice placed in the x-z 

plane, where the scale-factor of the lattice for the x and z 

directions are normally uniform, respectively.  As 

shown in Fig. 3, not all the voxels of a solid volumetric 

object is run-length-encoded. To avoid unnecessary 

memory consumption, only voxel surface data is RLEed, 

while occluded voxels in the inner area are removed, i.e., 

not RLEed. Section 3.2 elaborates on the specific data 

structure of the RLEed voxel data. 

3.2 Data Structure 

The data structure of the voxel data should be able to 

utilize GPU’s performance as much as possible, and it 

has therefore been optimized based on statistical 

evaluations of experimental results.   

As shown in Fig. 4, the entire data structure basically 

consists of two parts: the pointer map and the RLE 

columns.  Each element of the pointer map (the lattice 

in the x-z plane) stores three different variables: the 

pointer to its corresponding RLE column buffer 

(described below) the number of RLE elements (defined 

below) included in that RLE column as well as the first 

(top-most) RLE element, consisting of “skipped voxels” 

and “drawn voxels”.  This paper defines an RLE 

element as a series of sequential skipped voxels and 

sequential drawn voxels, where a skipped voxel 

corresponds to an invisible voxel that is not stored, and a 

drawn voxel corresponds to a voxel that is stored in the 

RLE structure with RGB color data.  For example, in 

the decoded voxel-space illustrated in the right side in 

Fig. 4, white voxels indicate skipped voxels and colored 

voxels indicate drawn voxels, respectively.  In the left-

most voxel column, the two voxels from the top are 

skipped (not drawn), and just below there is one 

 

Fig.3: Pre-Processing: The initial volume data (left), then the surface in 
the center and the run-length-encoding of opaque segments on the right.

 

Fig.4: Data structure: The RLE data structure consists of a 64 Bit 
pointer-map referring to the RLE columns. Each RLE column consists 
of the RLE elements array and the depending color array. 
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(colored) drawn voxel.  Therefore, “2” and “1” are 

stored in the “skipped voxels” field and “drawn voxels” 

field in the pointer map element of the RLE structure in 

the left side, respectively.  

As shown in Fig. 4, the RLE column’s buffer, which is 

referenced by the pointer of an element of the pointer 

map, stores the numbers of the skipped voxels and drawn 

voxels of the second to the m-th RLE elements, where m 

is equal to the number of the RLE elements stored in one 

column, the element of the pointer map.  In addition, 

the RLE column’s buffer stores the color for each drawn 

voxel in the order of the voxels’ appearance in the RLE 

column.  

To achieve efficient computation by GPU, the number of 

memory accesses has to be minimized.  We therefore 

store 64 bit elements in the pointer-map, as 64 bit is the 

largest amount of memory that can be pulled in one read 

by the GPU.  Note that one 64-bit element includes all 

the data required to test the visibility of the first 

(topmost) RLE element.  This strategy increases the 

rendering performance (speed) particularly for large 

outdoor environments and landscape-like scenes with 

hills and mountains, because one memory read is 

sufficient to test the visibility for approximately 90% of 

all rasterized elements according to our preliminary 

studies.  

3.3 Level-of-Detail Computation 

As described in Sections 1.3 and 2, the individual RLE 

data for each level of detail is obtained in advance prior 

to the visualization process.  We apply the idea of 

texture mip-maps to the original RLEed voxel data and 

generate RLEed mip-volumes.  The original RLEed 

voxel data has the highest resolution and is used for the 

LOD that corresponds to the range closest to the view 

point.  As the distance from the viewpoint gets larger, 

RLEed voxel data with lower resolutions are used.   

More specifically, suppose that lev denotes a level of 

detail, where lev ranges from 1 (highest resolution) to L 

(lowest resolution); the size (length of a side) of one 

voxel in the level lev (≧2) is twice as large (long) as that 

in the level lev-1, where linear down-sampling is applied 

to the voxel data in the level lev-1 so that the voxel data 

in the level lev is obtained.  For example, an original 

volume of 16x16x16 has four mip-volumes: 8x8x8, 

4x4x4, 2x2x2 and 1x1x1.  As described in the 

following, the resolution is dynamically chosen by the 

visualization process, depending on the distance to the 

viewpoint. 

4. Rendering 

The rendering for each frame consists of multiple steps, 

as displayed in Fig.2 and described in Section 2. 

4.1 Vanishing-Point 

We first compute the vanishing point vp, the point at 

which all the concentric planes meet in the screen plane 

(see Fig.1).  Each plane is projected to the screen as one 

straight line and all the lines meet at the vp. The 

vanishing point can easily be obtained by intersecting the 

vertical line that is parallel to the y-axis and passes 

through the viewpoint with the screen-plane as follows.  

 

   

   (1)   

 

 

 

where d denotes the distance between the camera origin 

(view point) and screen-plane, and αp represents the 
camera's pitch angle, which is defined as the rotation 

around the horizontal axis (the x-axis) of the camera 

coordinate system. A pitch angle of zero means that the 

optical axis of the camera is horizontal.  The vanishing 

point is projected to the screen space by the following 

equation:  

 

 (2)   

 

where vpscreen represents the projection of vp to the 

screen space, Acam represents the 4x4 camera matrix.  

Each plane intersects the screen as one line originated in 

vpscreen (Fig.1).  

4.2 Concentric Planes 

Since each plane is projected to the screen as one line 

that is originated in vpscreen, we need to focus on 

achieving a complete coverage of the screen by the lines 

originated in vpscreen. To achieve this, as shown in Fig. 5, 

we split the screen into four segments, where the 

 

Fig.5 Screen segmentation: VP represents the vanishing point while 
Seg 1..4 refer to the four segments. 

0

1
sin( )

0
p

d
vp

α

 
− = ⋅ 

  

screen camvp A vp= ⋅



IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX 

6 

borderlines between adjacent segments meet at vpscreen, 

and the angle between adjacent borders is 90 degrees.  

We texture each line included in the left and right (with 

respect to vpscreen) segments in the horizontal direction 

and in the upper and lower segments in the vertical 

direction.  The number of lines included in each 

segment depends on the number of pixels on the screen 

border in this particular segment.  This implies that 

each pixel in the screen border of a segment should be 

the end of a line (projected plane), whose another end is 

vpscreen.  We can calculate the number of planes (lines) 

as indicated below: 

 

(3) 

 

 

where npi denotes the number of planes for a given 

segmenti, borderi denotes one of the four borders of the 

screen, and dist(…) indicates the computation of the 

distance in pixels between vpscreen and borderi. The 

parameters vpscreen and npi, which are computed by CPU, 

are transferred to the GPU for the subsequent 

computations. 

4.3 Plane Parameters 

As described in Section 2, all the calculations described 

in the rest of Section 4 are executed on the GPU in a 

parallel manner by using multiple threads.  The number 

of simultaneous running threads depends on the number 

of processing units of the underlying hardware. In our 

case, 240 processing units are available. 

 

The parameters to be computed for each plane are as 

follows: the start and end points of the projected line in 

the screen as well as the plane's rotation around the y-

axis.  The start and end points are used for rendering 

and clipping the projected RLE elements to the screen.  

The rotation around the y-axis defines the orientation in 

which we march through the RLE structure (Section 4.4). 

4.4 Rasterizing the Ray Buffer 

The RLE elements are visualized in two steps.  In a first 

step we rasterize the elements to a 2D temporary ray-

buffer, each row of which stores the projected result of 

one concentric plane.  In a second step, the temporary 

ray-buffer’s contents are texture-mapped to the screen. 

4.4.1 Traversal per Plane 

To rasterize the RLE elements to the temporary ray-

buffer, we traverse the pointer-map, which is placed in 

the x-z plane as shown in Fig. 1 and Fig. 4.  As shown 

in Fig. 1, the straight line in which a concentric plane 

and the pointer-map (x-z plane) meet is considered.  For 

a point (an element of the pointer-map) on the straight 

line, the RLE elements (voxels) visible from the 

viewpoint are rasterized in the radial line in which the 

concentric plane and the screen meet.  This process 

starts from the point just below the viewpoint and is 

traversed till it reaches the point that corresponds to the 

predefined maximal distance from the viewpoint.  

During this traversal, culling, which is explained in 

Section 5, is performed for the visibility check.  

The traversal is not equidistant as it is often done in 

volume visualization.  As shown in Fig. 6, equidistant 

traversal performs equidistant sampling of the pointer-

map’s elements on the straight line.  This is simple, but 

leads to errors in the visualization.  Instead, we apply an 

exact grid traversal, which correctly samples all the 2D 

grid intersections during the traversal according to [4].  

In Fig.6 we compare the visual results of the exact 

traversal and the equidistant traversal.  The exact 

traversal requires slightly more computational effort, but 

the result is significantly better. 

During the above-mentioned traversal, LOD needs to be 

switched according to the distance from the viewpoint.  

This paper selects LOD according to the distance 

between the viewpoint and a point on the line in which 

the concentric plane and the x-z plane meet.  Suppose 

pd is a predefine distance along the line.  From P0, the 

point below the view point, to P1, which is away from 

P0 by pd on the line, the RLE data (voxels) with the 

highest resolution is used for the rasterization; similarly, 

from P1 to P2, which is away from P1 by pd, the second 

highest resolution is used, etc.      

4.4.2 Projecting RLE Elements to Ray-Buffer 

As mentioned earlier, the visible part of each RLE 

element is rasterized to the temporary buffer as a 

textured line, where the x, y and z coordinates of the 

start-point ps and the end-point pe are the 3D world 

 

Fig.6: Ray sampling: On the left side we can see the simple equidistant 
raycasting while the more advanced and accurate one is shown on the 
right. 

 

2 ( , ), [1..4]i screen inp dist vp border i= ⋅ ∈
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space coordinates of the particular RLE element.  We 

project ps and pe into the screen-space using the camera 

matrix Acam as follows: 

 

 

 

 

(4)  

 

 

 

 

 

 

 

In the formula, pscam and pecam contain the x, y and z 

coordinates of the ps and pe in the camera space.  The 

camera space is defined as orthonormal-basis, where the 

origin is placed at the view-point, the z-axis a straight 

line from the viewpoint towards the center of the screen, 

the x-axis a straight line towards the origin and parallel 

to the upper and lower screen border and the y-axis a 

straight line towards the origin and parallel to the left and 

right screen border.  The variables psscreen and pescreen are 

the two dimensional ray-buffer coordinates of ps and pe.  

As described in Section 4.2, either the horizontal (x) or 

vertical (y) component of the start and end coordinates is 

used for rasterizing RLE elements into the ray-buffer. In 

the ray-buffer, the projection of each plane is represented 

as one column, as shown in the upper half of Fig.7.  

Therefore, either the horizontal (x) or vertical (y) 

coordinates of the start and end-point are used to define 

the vertical 1D position inside the column of the ray-

buffer.  In Fig.7, Segments 1 and 3 use the horizontal 

(x) coordinate, while Segment 2 and 4 use the vertical 

(y) coordinate of psscreen and pescreen.  After the start and 

end positions inside the column are determined, visibility 

culling is performed (detailed in Section 4.4.3), before 

the textured rasterization is done (Section 4.4.4). 

4.4.3 Culling 

As described in Section 4, culling needs to be performed 

to only render the visible parts of RLE elements and 

efficiently skip RLE elements that are invisible.  This 

paper uses three culling methods including novel and 

known methods.  It is possible to combine these culling 

methods for optimal performance.  However, utilizing 

all the algorithms simultaneously is not efficient due to 

mutual interference.  It is efficient to use the floating 

horizon algorithm together with shared memory culling 

or per pixel forwarding. However, shared memory 

culling and per pixel forwarding interfere, because they 

are both executed on a per-pixel-level.  

4.4.3.1 Modified Floating Horizon 

We utilize the well-known floating horizon algorithm, 

which has already been used in the original voxel 

forward projection algorithm [1].  The floating horizon 

algorithm does not conflict with the other culling 

methods we use and can hence be used in combination 

with all the other culling methods.  The algorithm 

works as follows: 

 

For each rendered plane, we store two offset values: one 

start and one end-offset along the projected line in the 

screen, defining the bounds of the render-able area.  

Once one RLE element that touches the start or end 

offset is drawn, we update this particular offset to narrow 

the bounding area along the line, which allows to cull 

more RLE elements. Using the floating horizon 

algorithm is possible, because we render opaque scenes 

from near to far, which means that every pixel is drawn 

only once.  

 

However, the basic floating horizon algorithm only 

works well if we have a height-map like scene such as 

mountains.  In case of complex scenes such as a tree, 

we have the problem of unconnected segments rasterized 

along the line, which cannot be handled efficiently by the 

original algorithm.  We therefore introduce a small but 

significant modification to the original method so that 

good performance is achieved even in complex scenes. 

The modification is as follows: after one RLE element is 

rasterized that touches either border, we update the 

 

Fig.7: Ray mapping: The upper part shows the temporary buffer with 
the four segments. The lower half demonstrates how the segments are 
mapped to the screen. 
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offsets and further test pixels next to the new offsets if 

they have been drawn already.  If they have been drawn 

already, we further narrow the bounds. Depending on the 

scene, this modification accelerates the culling process 

up to two times. 

4.4.3.2 Shared Memory 

The shared-memory culling algorithm takes advantage of 

the fact that our method draws every pixel in the screen 

only once.   This means a binary map suffices to store 

the visibility information in the screen.  This map is so 

small that it is fitted entirely into the graphic cards 

shared memory.  Our target hardware, the NVidia GTX 

series, provides two main types of memory: Global 

memory and shared memory.  The difference between 

both types is that a memory access to global memory 

consumes about 300 processor cycles, while an access to 

the shared memory only requires one cycle.  Therefore, 

using a binary visibility map stored in the shared memory, 

we can apply per pixel culling very fast without 

accessing the slower main memory.  Shared memory 

culling accelerates the rendering speed by 40% to 140%, 

depending on the scene. 

4.4.3.3 Per Pixel Forward 

Lacroute’s culling based on per pixel forwarding [3] is 

slightly slower and more complex than the previously 

described shared memory culling, but it is needed for 

screen-resolutions where the number of simultaneously 

processed pixels of the screen exceeds the number of bits 

available in the shared memory.  In our case, this occurs 

at screen resolutions with more than 900 pixels in the 

vertical direction. 

 

The per-pixel forward algorithm works as follows: for 

each pixel in the temporary buffer we store a relative 

jump offset.  This offset is set to zero in the beginning 

and is updated once an RLE element is drawn as shown 

in Fig.8. Since relative jumps help to skip pixels 

efficiently, we achieve a speed-up of approximately 1.08 

to 2.0 times, which is significantly faster than the 

floating horizon algorithm alone, but approximately 20% 

slower compared to shared-memory culling.  

4.4.4 Drawing RLE elements as textured Lines 

Each RLE element is rasterized into one or multiple 

columns of the temporary ray buffer as a texture mapped 

line, using the coordinates of ps and pe as the vertical 

positions in the column.  Using texture mapping 

significantly speeds up the overall computation, because 

voxels are rendered as a group rather than individually 

(the data structure is described in Section 3.2).  To 

achieve a proper appearance, we apply perspective 

correct texture mapping.  Simple non-perspective 

texture mapping interpolates the 2D texture coordinates, 

which leads to an approximated but wrong visual 

appearance.   Perspective correct texture mapping uses 

not only the 2D texture coordinates but also the depth 

coordinate (z), which leads to a correct result.  

4.5 Displaying the Ray-Buffer 

We can map the texture stored in the temporary ray 

buffer efficiently to the screen using the graphics card’s 

Pixel-Shader. To achieve this, we have to calculate the 

source (U,V) texture coordinate in the ray buffer for each 

target pixel (xs,ys) on the screen. The mapping is applied 

in a concentric manner with respect to the vanishing 

point vp as shown in Fig.7. We define the formula to 

compute the source (U,V) texture coordinates inside the 

ray-buffer by Eq.(5) as follows. 

 

 

 

(5)  

 

 

 

In the formula, U defines the horizontal coordinate inside 

the ray-buffer, V the vertical coordinate, xs the horizontal 

screen coordinate, ys the vertical screen coordinate and s 

the start-offset that is added for the corresponding 

segment of the ray-map. The indices of U,V and s 

represent the segment index as numbered in Fig 5. The 

valid range of the texture coordinates (U,V) as well as 

the screen coordinates (xs,ys) ranges from 0 to 1. 

4.6 Quality Aspects  

As shown in the flow-chart of Fig.2, the quality of the 

image rendered in the screen is improved at the final 

stage of the render pipeline.  Since we use conventional 

texture mapping functions of the graphics card, texture 

filtering, which is natively supported by every GPU, can 

be applied without performance impact to improve the 

quality. We employ two methods to handle this issue: 

smoothing and anti-aliasing. The combination of both 

algorithms can significantly improve the rendered image 

quality.  

 

Fig.8: Skip-Buffer: Each element in the skip-buffer stores the number 
of drawn pixels that can be skipped until a free pixel is found. 
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4.6.1 Smoothing 

We apply smoothing as a post-process in image-space by 

the Pixel Shader. We developed a special smoothing 

method that achieves two types of smoothing in one 

shader pass: Smoothing of voxel silhouettes and 

smoothing of voxels close to the camera themselves. 

Figure 9 shows an example of the result of this method.  

 

The smoothing contains of multiple steps, illustrated in 

Fig.10. Step a) shows the target pixel in the original 

image.  In step b.), we search the minimum depth of 

eight pixels that lie in a circle around the target pixel. 

The radius is fixed for this operation. In step c) we apply 

a box filter for 5x5 pixels. The scale factor of the box 

filter is determined by the previously computed 

minimum-depth. For the smoothing, we only include 

pixels, which are within a limited depth range near to the 

minimum depth. As a result, we can see that both, the 

silhouette and the inner region in our example has been 

smoothed well in step d).  

4.6.2 Anti-Aliasing 

To further improve the quality, we apply full-screen anti-

aliasing (AA) by rendering the scene with a higher 

resolution and down sampling the rendered image so as 

to obtain the target resolution.  Figure 11 compares 

three configurations: No AA, 2x1 pixels AA and 2x2 

pixels AA. Obviously, 2x2 pixels AA and 2x1 pixels AA 

give the best and second best quality.   

4.6.3 Screen Space Normals (SSN) 

To visualize large data sets such as the Richtmyer-

Meshkov on consumer graphics cards with only 256MB 

ram, we can recover (approximate) the surface normal n 

for shading from a few samples in the depth buffer by Eq. 

(6).   
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where xs, and ys represent the horizontal and vertical 

coordinates of a pixel in  the screen, respectively, Depth 

( . ) represents the depth of the pixel (argument) in the 

depth-buffer, rnd is the random function to achieve an 

averaged result for multiple samples, x for computing n 

is vector cross-product.  Note that Eq. (6) indicates that 

the sample region needs to be reciprocal in size to the 

sampled depth value zs of the pixel (xs, and ys).  In case 

the pixel is close to the camera, we need a large region 

and vice versa.  

 

To achieve a satisfying result in our implementation, at 

least 16 samples from the depth-buffer should be used. 

Since computing a random value by GPU is slow, we 

sample a random value from a texture as an alternative.  

As SSN and SSAO [12] sample the depth-buffer in a 

similar way, it is possible to efficiently combine both 

methods in only one shader-pass.  An example of the 

result is demonstrated in Fig.12. 

5. Experimental Results 

We conducted experiments with multiple scenes to 

evaluate our algorithm in terms of rendering speed, 

memory consumption and quality.  The scenes used for 

testing are shown in Fig.13.  Our experimental system 

consists of a Pentium-D 3.0 GHz Processor with 1 GB of 

RAM and a GeForce285 GTX (1024MB) graphics board 

with 240 stream processors.  As shown in Fig. 2, we use 

 

Fig.9: Smoothing: The left image shows the basic rendering. To 
improve the rendering quality, we smooth the silhouette (middle 
image) and the interior part as well (right). 

Fig.11: Anti-aliasing (AA): We investigated three quality levels: No 
AA (left), 2x1 AA (center) and 2x2 AA (right). 

 

Fig.10: Smoothing steps: a.) Target pixel b.) Find minimum depth (Z)
c.) Box-filter with threshold; scaled according to the minimum depth
d.) Result 
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NVidia CUDA to compute the raycasting part of the 

algorithm, while texture mapping the temporary ray-

buffer and the post-processing are executed in the Pixel-

Shader.  The render-resolution for all the tests is set to 

1024x768 pixels, while the AA setting for improving 

quality is 2x1, which provided the best tradeoff between 

quality and performance. 

 

Table 1 shows the result of benchmark tests.  Bits per 

voxel indicates the number of bits required for storing 

the position information of one voxel, taking the pointer-

map and mip-maps into account as well.  The bits used 

to store the position of one voxel range from 10.83 to 

26.3, which is significantly less than a pointer-based 

octree.  The pointer-based octree requires 32 bit only 

for the tree leaves, which sums up to about 

32*(1+1/8+1/64+..)=36.8 bits for the entire tree. 

However, in some scenes our algorithm requires more 

memory than splatting based algorithms such as QSplat, 

which only utilizes 13 bits per leaf.  As described 

earlier, the accuracy of splatting-based methods is 

limited to the size of the splats; therefore, in particular, 

unreasonably sharp edges tend to degrade the image 

quality.   

 

To measure and evaluate the rendering speed, we first 

investigate the maximum polygon performance of our 

graphic card.  In case of rendering as a quad by two 

textured triangles, 350 Million triangles per second are 

the limit of our graphic card for rendering triangle strips 

while splatting reaches 100 Million primitives (splats) 

per second.  In Table 1 we can see that the proposed 

algorithm achieves a high count of processed RLE 

elements per second (Speed, Elems/s), ranging from 112 

to 365.8 Million RLE elements per second.  This speed 

is twice to three times as fast as basic splatting and 

surprisingly outperforms even the default OpenGL 

rendering pipeline with 350 Million triangles/s in certain 

cases.  Further information included in the table are the 

total number of RLE elements inside the view frustum 

(RLE Elem total), the number of RLE Elements that 

have passed the culling test (RLE Elements, ren), frames 

per second (fps) and the resolution of the single dataset 

(Resolution).  For testing the performance in case of 

large outdoor areas, we created scenes containing more 

than one thousand instances of the same data set for the 

procedural scene and the bonsai scene.  The maximal 

view distance has been set to 40.000 voxel in both cases. 

The large outdoor scenes of the bonsai and the 

procedural dataset have contributed to table 1 as well. 

They have been used in all our tests, to evaluate the 

performance, the compression ratio and the quality as 

well. 

 

To compare the performance of our GPU implementation 

to the CPU, we implemented our method also for the 

CPU as well.  As a result, it turns out that the GPU 

implementation tested on an NVidia GeForce 285 is 

three to seven times as fast as the CPU implementation 

executed on a test system with an Intel Core2 Quad 

Q6600 CPU with 4x3 Ghz and 1GB ram.  The GPU 

outperformed the CPU by factor three for light scenes 

without AA and factor seven for complex scenes, with 

AA enabled, where the scenes used for testing are shown 

in Fig.14. 

 

We further evaluated the render speed in regard to the 

image quality by measuring the performance for different 

quality settings.  We compared no anti-aliasing, 2x1 

anti-aliasing and 2x2 anti aliasing (Fig. 11).  If the 

speed for the no anti-aliasing is 100%, 2x1 AA and 2x2 

AA achieve 104% and approximately 80%, respectively.  

The increase in speed for 2x1 AA might be explained as 

 

Fig.12: Normals: The depth-buffer can successfully be utilized to 
compute normal vectors on the fly (Left). These can be utilized for 
shading and further enhanced with screen-space-ambient-occlusions 
(Right). 

 

Fig.13: Test scenarios: Handcrafted mansion (up left), Bonsai forest 
with 3000 trees (upright), Happy Buddha (middle left) and a 
Procedural Landscape with about 4000 visible trees (middle right), the 
Stanford Dragon and the Stanford Bunny. 
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better coalescence for reads from GPU memory.  On the 

GPU, coalescent memory reads are very important.  It 

also means that half the GPU’s processing units are idle 

in case of the no AA configuration, because 2x1 AA 

requires two times as many floating-point operations as 

no AA.  As a result of this experiment, the main 

limiting factor of our algorithm is the memory-

bandwidth. In computer graphics, every rendering 

algorithm’s speed is either limited by the speed of the 

processing unit (here the GPU) or the speed of the 

memory. In out case, the speed of the memory is the 

limitation. We already reduced the memory bandwidth 

by employing multiple culling algorithms – yet it still 

remains the limiting factor. To further improve on that, 

additional compression schemes might be helpful.  

As shown in Fig. 15, our algorithm is able to achieve 

high quality renderings for a scene with many fine 

structures.  To facilitate the comparison, we render the 

result using 2x2 AA in the left half and no AA in the 

right half. 

Finally we visualized the Richtyer-Meshkov data set, 

which is one of the largest data sets, with a resolution of 

2048x1920x2048.  The size of the RLE compressed 

data of the surface at iso-value 60 is 198 MB including 

mip-maps.  This results in a compression factor of 5:1 

in regard to the binary volume data.  As this particular 

data set is very large, we do not store color or shading 

information. For the visualization we compute the 

normal vectors on the fly from the screen-space, as well 

as approximated ambient occlusions.  The visualization 

speed that we achieved at a resolution of 1024x768 is 

interactive frame-rates: 15 fps for rendering a single 

instance of the data-set (Fig.14) and 10 fps for rendering 

the data-set repeatedly as shown in Fig. 16.   

6. Conclusions 

This paper presents an efficient adaptation of the voxel 

forward projection algorithm to utilize recent graphics 

hardware. Several improvements to speed up the 

algorithm, optimize memory consumption, as well as 

improve the rendering quality were proposed. Initially, 

the surface data is run-length-encoded to allow fast 

decoding for rendering on the GPU. According to [8], 

RLE is the second fastest algorithm to decode lossless 

compressed volume data.   

Experiments using different scenes show the following 

results.  The proposed algorithm is up to seven times as 

fast as the equivalent CPU implementation, up to three 

times as fast as basic splatting and even surpasses the 

performance of the default OpenGL pipeline in terms of 

primitives per second for some of our test scenes.  We 

were able to further visualize large and highly detailed 

 

Table 1: Performance: We evaluated the performance of our 
algorithm based on various scenes. Anti-aliasing is set to 2x1. 

 

Fig.15: Quality: To show the ability to render at high quality, we 
created a complex test scene with many fine details rendered at 
512x384 pixel and 2x2 AA as well as no AA for a comparison. Note 
that 2x2 AA successfully removes aliasing artifacts for distant pixels. 

 

Fig.14: GPU vs CPU: We compared our GPU implementation running 
on an NVidia GTX 285 to the CPU (Intel Q6600 4x3Ghz). 

 

Fig.16: It is possible to render the complete Richtmyer-Meshkov dataset 
more than 100 times at interactive rates at a 1024x768 screen resolution. 
For the shading, we utilized a combination of screen-space-ambient-
occlusion and screen-space normals. 
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data sets on a single NVidia GTX 285 GPU at interactive 

frame-rates. 

Furthermore, our method is very memory efficient: i.e., 

the storage required for one voxel during run-time is 

only 10.8 to 26 bits (Table 1). This is on average slightly 

more than Qsplat, which achieves 13 bits, but has 

significantly higher quality (Fig.9 and Fig.15). Also, the 

storage per voxel is significantly less than conventional 

tree-based ray casting (such as octree), which consumes 

more than 32 bits for referencing each node.  

In terms of quality, we achieve sub-pixel accurate 

rendering by employing 2x1 full-screen anti-aliasing at 

full speed. Using 2x1 AA does not decrease the speed 

compared to not using AA.  

Although the results are very promising, remaining 

issues include adding support for streaming data into the 

GPU memory on demand. This allows for rendering 

scenes that do not fit inside the graphic card’s memory.  
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