Visualizing Large Procedural Volumetric Terrains Using Nested Clip-Boxes

Sven Forstmanrand Jun Ohya

Abstract

play in one video game increases.
In walk-through type of games, the size of a lévelormally

This paper proposes a novel terrain-rendering rdetholimited. This is mainly due to hardware constraistsch as

based on nested Clip-Boxes to visualize massiveegtoal
volumetric terrains. In our method, the terraidlédined as a
three dimensional function, provided by the usehictv
generates appealing looking, unique volumetriaieshapes.
For the visualization, we sample the function inuser
defined quadratic view-region around the viewpaimd store
the result as voxel volume data in a first stepghi1second
step, the volume data is converted into a triangeh for the
hardware accelerated visualization. To provide hjghlity
rendering as well as high computational performamnee
employ level of detail by introducing a novel nels@ip Box
strategy. Our results show, that using our strat2fyrames
per second can be achieved on average for a higiteyled
landscape. Different from existing methods, outhésfirst to
allow the immediate visualization of arbitrary slze
volumetric terrains in real-time, as it does nqiated on any
pre-computation.

1. Introduction
1.1 Background

Video games have been popular since their verypfitwe
and their popularity has continued to grow sincenthin
2008, video games yielded a market larger in revehan
the movie and music industries [23]. In the videamg
market, especially Japan plays a significant rel&'s. share
is, with a revenue of over $7 Billion as of 200&][2the
world’'s second largest. Despite the increase iremas,
however, development costs have also dramaticadigased.
For many productions, development costs are appirgaor
exceeding the revenue of the respective video dgaSie
Thus cutting costs is very important in this indyst

In general, a large component of the developmesitiso
the cost of labor for content generation [25]. 8inddeo
game users constantly demand new, larger, anddetated
virtual-worlds, the current system of labor-inteestontent
generation is not sustainable. Therefore, automatetent
generation is a viable way to greatly reduce devent
COSts.

the capacity of the disk space and data transtes ras
content is pre-generated and just displayed at -giamee If
not very carefully exercised, this often resultsaidimited
walk-through range, or a mere repetition of the/plef the
same level already experienced. Hence, the uskisabme
bored. In order to mitigate such effects, the whtkugh
range should not be experienced as limited, ané sieould
not be any repetition within a given level.

However, repetition is not the only issue. Contaetail
and flexibility is a problem as well. Conventioyalheight-
map based methods were used for rendering tertz [
While height-map based approaches are largelyciiftifor
video games featuring isometric perspective sucbhagime
tactics, first person games demand more interesting
landscapes, including concaves and overhangs. folrere
recently height-maps were step-by-step replaced by
volumetric terrains [14,20,24] so that more vasatgrrain
landscapes, including concavities and overhangsid doe
generated.

The creation of these complicated, and thus irttages
volumetric terrains necessary for long-range whikigh
environments can either be achieved by manual tpesa
[8], or procedural methods [20,24]. Manual creatioy
content creators is expensive in terms of time farahcial
cost and thus should be reduced as much as possible
Procedural methods save time for creators, howehey,
produce huge amounts of data, which needs to bedstmd
loaded again on run-time. To solve this issue, gutocal
methods need to be integrated into the video gamne f
generating contents at run-time.

1.2 Related Work

Related works can be found in various areas: Aca&jdem
video games, and general applications. Previoagereivork
focused either on generating procedural terrairmioffline
process, or on the visualization of large and etahree-
dimensional objects in real-time.

We therefore review two separate types of algosthm
First, algorithms used to generate procedural itexrand

As users tend to get bored if the same contents arsecond, algorithms used to visualize large andlelténree-

presented each play, the demand for different othie each

dimensional objects.

1.2.1 Procedural terrains

In games, procedural terrain generation has alrbadn
used. An example of this is the successful videnegal he
Elder Scrolls 1l: Daggerfall’, by Bethesda Softwar&
massive sized terrain (a flat map, no height inégiom) was
one of the main elements of this game.

In academia, procedural terrains can be found #s Rve
Prusinkiewicz has developed a method to createtafrac
height-map based terrains [16]. More advanceckisrtbthod
of A. Peytavie et. Al. [24]. He has proposed aroitigm to
automatically generate large volumetric terrainsluiding
caves and overhangs. As in our method, also hisauetses
volume data for the creation of the terrain.

Lindstrom [7] is similar. In his method, vertica® @&lustered
in a hierarchical fashion to achieve the view-delpah LOD.

Other related approaches propose the usage of itgs,
also known as splats, for representing the sced@ 1]l In

[10], a combination of splats and polygons is usedere
polygons solve the geometry near the viewpoint spidts
are used for distant geometry.

A method that utilizes a LOD structure, which isigr to
ours, is called GoLD [9]. Here, the mesh resolutisn
continuously reduced according to distance by $inite
among several pre-computed detail levels of th@limesh.
The LODs are computed by vertex removal in ordenible
a smooth transition by geo-morphing.

However, none of the methods [6,7,9,10,11,12] isisle
for visualizing large on the fly generated volurigeterrain

In other areas, non-game and non-academic, pratedurdata. All of the aforementioned approaches redntensive

terrain generation has been developed as wellagemr[15]
allows the generation of arbitrary, height-map baserains.
In Pandromeda [14], height-map based terrains dsml a
volumetric terrains can be generated. In both,] [15],
the user can freely choose a terrain function. Ahotkthat
generates a volumetric terrain for the visualizafio real-
time, is the NVidia Cascades Demo [20]. There,ténein
function is fixed to Perlin Noise [28].

However, all related works create the terrain asfiime
process, even though they support to visualize rieal-time
as in [20]. There is no algorithm available yett thapports
the dynamic generation of procedural volume dattherfly
in parallel to the visualization process.

1.2.2 Visualization of large 3D Objects

Since our algorithm visualizes the terrain voluna¢acdas
polygonal mesh, we also review methods that viseiddirge
and detailed objects, which consist of either pafa mesh
data or opaque volume data.

One published algorithm is [17], where the terr&n
represented by a 512x512x64 voxel grid, and visedlby
using multi-resolution raycasting.

As for the interactive visualization of large isofaces
from volume data, Gregorski et al. [4] present dhoe that
recursively subdivides the scene into diamondschasepre-
calculated error-values. The method is basicallyhree-

preprocessing of the full data set—prior to vizalon, and
they have to store the complete terrain data taswalized.
Besides the large amount of resources necessaiygdur
preprocessing of polygon or volume data as in [ttO¢reate
the run-time structure, it is easily visible thia¢ tamount of
data generated obviates the application of lardle-threough
ranges.

1.3 Proposed Method

To solve the problems above, we propose a mettaid th
can efficiently visualize 3D terrain data that engrated on
the fly by a function based procedural approachil&i to
our approach, also [14,15] and [20] use functiongenerate
the terrain.

The method at hand only requires the terrain fanstfor
generating the underlying volumetric data and their
parameters. Storing the entire volumetric data rgeee from
these functions is not necessary. Since any ailyitra
expressive function can be chosen for data geosyatie
walk-through range and the number of levels aredofronly
by the parametric range of the function. Due topbssible
large range of variations, there is a rich numbedistinct
concavities, overhangs, and other interesting tsires that
can be generated in run-time. Note, that as proakdu
creation of volumetric terrains is already addrédséy
various methods such as [14,15,20,24], the maimsfo€ this

dimensional extension of the height-map based iterra paper is on generating the visualized terrain imately on

rendering method that is known as ROAM [1], andveois
the input data into a special format in a pre-pseirey step.
For visualizing large meshes, several methods Heen
invented. Most of them, such as [6,12], clusteiitbet mesh
in multi-resolution shapes, such as cuboids ordetrs.
They have to be created in a pre-computation siephé
dynamic assembly at runtime. The approach presdnted

the fly, without relying on any pre-processed détdferent
from the proposed method, [14,15,20,24] are nok &bl
create and update the terrain data in paralldidaeal time
visualization.

3D Clip-Boxes

Ty + _ " _
, " $
Geometry Thread Render Thread
For each Clip-Box For each Clip-Box
(If (from Volume-Data) | (For each triangle |
————
subdivision
| Smoothing
|__Synthetic details
- | " # -
0 ' " "
$ % & ")
n - $ n $
% —

Our method provides the following benefits.
volume data is converted into triangle data. Theversion
« Visualize arbitrary massive terrains, includingiesting ~ from volume data to triangles is very similar tsualizing
structures such as concaves and overhangs atctivera iSO-surfaces and can be solved by using one of the
frame-rates. conventional algorithms such as marching cubes [3].

+ The amount of manual labor necessary for contentiowever, as the amount of triangles arising fromeati
creation is reduced volume data to polygon conversion is immense, we ta

+ The walk-through range of a level is potentiallfimited. ~ €MPloy an efficient level-of-detail (LOD) approati our

+ The number of terrains that can be generated ig oniSystem. This is necessary to keep the polygon-count
limited by the number of outputs of the procedural’€asonable for today's graphics hardware.
generation function. Nested geometry clip-maps, which derive from cligps

+ The terrain data is generated on the fly, in peredi the ~ [13], provide all of our desired features for theot
visualization. dimensional height-map based case — however, teryot

solve the three-dimensional volume-data based case.

The paper is organized as follows: Section 2 oearsithe
paper; section 3 explains the clip-box algorithexstien 4
discusses the experimental results; and sectioonéludes

We hence extend the clip-map based terrain vistaliz
approach of Lossaso and Hoppe [2] on geometryneéips to
the third dimension by introducing nested clip-l&»&hown

in Fig.1. They have very similar properties to ctipps, but
are unlike more complex. Fig. 2 shows an exampla of
single Clip-Box (CB). In contrast to clip-maps, wheested
regular grids suffice to represent the geometry. (Ej, CBs
Our landscape visualization method merges terraif@Ty complex, rapidly changing mesh-topologies. ilgvh
synthetization and visualization in one system. Treain ~ €ach geometry clip-map is represented as a redsngu
itself is defined as three dimensional functioriréaf by the ~ Portion of the landscape’s height-map, each clip-bo
user. For the visualization, the function is samijitea cubic ~ '€Presents the iso-surface of a cubic portion ef téirain
region around the view point, and stored as voldate. For ~ Volume data.
the hardware accelerated visualization on the GiPd,

the paper.

2. Overview

" -
N\

/ N/
b’\ /U(enex
—
7/ N
~ @

7

Our algorithm visualizes the terrain using a twedded
approach that is shown as a diagram in Fig.3. if$tetliread
with a low update rate creates the procedural veldata and
converts it into polygons. The second thread withigh
update rate continuously displays the polygonderstreen.

For the procedural terrain generation method, which .
computes the landscape volume-data to be used éy th

nested-clip-box algorithm, we use a relatively deripnction
that produces landscapes complex enough to prowe t
efficiency of our method. Since the formula for tieerain
generation can be defined by the user, we do moisfon
inventing a novel formula. However, we refer toethr
interesting works on offline rendered volumetricdas that
show the large variety of possible landscapeshiee been
created based on mathematical computations rattsr t
artistic modeling: Pandromeda Mojoworld [14], Teea
[15] and Arches [24]. The references show that melic
terrains can be much more interesting than heigipt based
terrains — even though they might not be alway$stiea
Especially in the area of entertainment, realisterofs not
the main purpose. One of the most successful mevies
“Avatar” [27], might be the best example. Therdaatasy
world called Pandora, with large floating rocks basn one
of the main elements in the movie.

3. Clip-Box Algorithm

Our nested Clip-Box algorithm utilizes a simple and

efficient structure to represent the terrain mé&gmilar to [2],
where the terrain geometry is cached in a setstédaegular
grids, our algorithm caches the geometry in a betested
Clip-Boxes (Fig.1). Once the viewpoint changes, Glip-
Box positions are updated incrementally to presehes
concentric LOD structure.

%

0.
v

A\

34

01

$

h&l Clip-Box

We define a Clip-Box (CB) as the polygonal conansif
a cubic portion of the entire terrain’s volume dathis can
be seen clearly in Fig. 2, where a pure CB is shawtime left
image. The right image shows it embedded into the
surrounding landscape. Unlike clip-maps [2], whiemain
simple regular grids with near constant compleitgr time,
CBs strongly vary in their complexity as they atgfted
through the volume data.

3.2 Data Structure

For each CB, we store the 8-bit volume data whaoh e
voxel is either set (opaque) or unset (transpareftte
polygon data that is created from conversion ctssé
triangle strips where each vertex inside the stipies x- y-
and z- coordinates as well as a normal vector.

In addition to these two structures, we furtherresto
adjacency information for each voxel to speed epv/tixel to
polygon conversion process. The links (32-Bit peis)t that
we have introduced can be seen in Fig.4. Theytdied as
follows:

Voxel to vertex. Required for inserting a new verteis
used to check whether a vertex has already beatedre
for the specific voxel.

Neighbours unequal
£ Create new surface

} Neighbours equal
£ No new surface —]

Set voxel D Unset voxel ICreated surface

HH

]

Step 1: Update view-point Step 2: Update inner Clip-Box

Step 3: Update view-point Step 4: Update both Clip-Boxes

» Vertex to vertex. Required for quick smoothing. fEac
vertex has a list of references to maximal 6 comukec
points.

» Surface to surface. Required for seeking triangipss
Each surface refers to all neighboring surfaces.

D Newly computed procedural volume data

D Reusable volume data

E] Not reusable area

56 ,

purposes. The required parameters, size and positieach
sphere, are random values of a user-defined range.

Our approach is similar to [20], only that our nueth
computes the visible terrain portions on the fither than
pre-computing the entire terrain.

3.4 Volume-Data to Polygon Conversion

As for the required basic conversion from volum&ada
polygons, numerous algorithms are available su¢B]af 8]
or [22]. However, since we also have to consideD|L@e
three basic algorithms are not directly applicale. further
need to take care of the following two issues:tFiiew to
close breaks in the geometry at LOD boundariesiefiily
(Fig. 6) and second how to achieve a fast conversio
Marching cubes [3] and marching tetraheda [18] eaehia
fast and appealing looking conversion from voluragado
polygons. However, they complicate welding of twoL
boundaries and also generating adjacency informatio
between vertices for our desired post-processing mere
difficult.

We therefore simplify the conversion process amne
each voxel as a cube with six quadrilateral susfaddis
allows us to efficiently weld bounding LOD levetsyether
seamlessly by further enabling the fast creatioadjicency
information. The drawback of this approach is obsip a

+ Surface to vertex. Required to access vertices foblock-like-looking initial polygonal conversion. Wsolve

rendering each surface.

» Vertex to surface. Required for connecting newasas.
The reference also helps to add the surface-taegurf
connections instantly.

3.3 Procedural Volume-Data Creation

To verify our algorithms’ feasibility, we employ lzasic
procedural volumetric method to generate terrdies are
complex enough for testing our algorithm. We thenef
apply constructive solid geometry (CSG) operatitmshe
volume data as in Fig.5. We procedurally add arutract
thousands of spheres from the empty voxel-voluniegus
Boolean operations to create complex landscapegegtng

this by geometry smoothing in a post-processing. St®
weld two LOD levels together, the conversion alfoni
considers all voxels in the bounding area of tweietw:CBs.

For the conversion, our algorithm visits each vafethe
volume-data that is enclosed by one Clip-Box arehtes
surfaces - if required - by taking direct boundmgjghbor
voxels in x-, y- and z-direction into account. Theed
volume-data is binary; each voxel is either setirmset. We
included a simple sketch in Fig. 7 to demonstitaevbxel to
polygon conversion for the 2D case.

3.5 Nesting

56
5+6 5&6

5-6

Nesting is required by our algorithm to achieve LOD
which helps to reduce the number of triangles. TO® is
already shown in Fig. 1. The scale factor for thip-Boxes
increases exponentially by the power of two, whhe

number of voxels contained by each Clip-Box remains

constant. For example, the size of CB one is 10@x1@0,
the size of CB two is 200x200x200 and so on — hewsediie
number of voxels contained by each CB is constat@iy.
This means for CB one, the voxel size is one, BrtWo the
voxel size is two, for CB three it is four and edl. In Fig. 1
we can see that for each CB, all geometry thataviotetrfere
with the next inner CB has to be omitted from reimde

It is also important that all CBs are connectedrsessly
without exhibiting gaps at the border- geometryp$accur
if the boundaries of two nested CBs are not walheated,
as demonstrated in Fig.6. Therefore, once theicreaf a
CB is finished, bordering vertices are connectepgnly to
the next outer CB to avoid gaps. This can be aebiev
efficiently by exploiting pointers in the data-sttwre.

3.6 Moving the View-Point

To fully understand the entire algorithm, it is thar
necessary to know what happens in case the viewt-i
moved. In the event that the viewpoint is moved, Bj it is
important to verify all Clip-Box positions in order preserve
our concentric LOD structure. In an ideal caseChfi-Boxes
are permanently centered about the viewpoint, éfvéime
observer starts moving. However, it is impossibleipdate
all Clip-Boxes fast enough. We therefore updaterr®ip-
Boxes often and outer ones only rarely, as doreogasso
[2]. This approach becomes self-evident when the $teps
in Fig. 8 are reviewed. For example the viewpoimnge
from step 1 to 2 only requires the inner CB to pedated.

N

The outer CB remains at its position, as the viemtpdhange
is not significant enough. Moving only the inner G8
possible, as the outer CB accommodates all geortettys
enclosed by its volume and can hence cover uphéoigap
arising from the move of the inner CB. A furthevaadtage
of this approach is that we can dynamically adjusthumber
of triangles on the screen by simply skipping tmeermost
Clip-Boxes.

To minimize the amount of newly computed procedural
volume data in the event of a Clip-Box-update, aehe the
previously computed data and only perform diffaednt
updates (Fig. 9). The updated portions are refetoeds
newly computed data inside the Figure.

$ 5% $
6 % "
$

3.7 Geometry Post-Processing

After the surfaces are obtained, we apply smoothipg
Laplacian filtering [19]. This significantly impres the
visual quality, since the mesh is very block-likkeathe
initial conversion. In Fig. 10, the difference beém image
one and two is clearly visible, as image one shtives
immediate result after conversion, while image stmws
the smoothed geometry.

In the event that a high update-rate for small Gi&ar the
viewpoint is desired, our algorithm enables fas@aton of
Clip-Box geometry from surface subdivision, rathiban
using the more complex extraction from volume-daig.11
shows the result of creating the innermost oneotw €Bs
from surface subdivision. Subdivision is done adtay to
Fig. 12.

Even though we do not propose a novel terrain géoar
method, we added a post processing effect that mefke
the generated terrain look more interesting. Outhatk
therefore supports synthetic details by random aiidp
displacement [16]. The effect can be seen in Fgirtages
three and four.

3.8 Implementation Details

Our algorithm has been implemented by using C+t. Fo
the graphics API, OpenGL has been employed. Weause

two-thread approach to separate geometry procefising
rendering (Fig. 3). This approach maps well to ¢heent
generation of multi-core processors, as each thiseable to
occupy one core. Each thread uses the correspofifiuy
core to 100 percent continuously. Load balancing et
been implemented. The task distribution of the thiveads is
as follows:

The geometry thread is in charge of computing tB&sC
mesh. This involves polygon extraction from voxeited
triangle subdivision, mesh smoothing and randompoiid
displacement (Synthetic details). To further impgrothe
performance, we added a module to group all sisfade

triangle strips, allowing cache-optimal renderinlis is done
by a depth-first search, utilizing the surfaceddace
connectivity information.

Thread two, the rendering thread, is in chargenfiering
all CB meshes correctly by sparing the trianglethef next
smaller CB inside. As it runs parallel to the filstead, we
have to be aware of concurrent use of the mesh Wé&ta
solved this by implementing a double-buffer systernere
each mesh buffer is assigned to one thread. Tinee, & CB
update is completed, the buffers are swapped synatsly.

In case of low voxel resolutions with many subdis
levels, problems near certain voxel patterns ofiggur that
strongly affect the smoothed result. In Fig 13stharitical
regions are emphasized with a white circle. Weefoee
employed a simple filter (lower left border in thigure 13)
that detects and reduces these patterns by seatchaace.
The result (right) indicates that most of the peatmhtic
patterns from the left image can be eliminated essfally.

3.9 Limitations

Since our method is based on volume data, the gevera

memory consumption is higher than conventionalliteigap
based methods such as geometry clip-maps.

Regarding the geometry update of a clip box in thse
the view-point is moved, this might be slightlyikle in case
of low clip-box resolutions.

- > * 3 ?7,)3

4. Experimental Results

Results from our method can be seen in Fig. 14revhe

numerous landscapes demonstrate the variety aefrterthat
might be visualized. The upper image shows a tethit is

(random mid-point displacement). The equivalent tof

additionally enhanced by shaders for the grass andisualized data volume has been F04sels.

handcrafted items to demonstrate the applicabifiy

As for the timing evaluation, we can see that rtios is

computer games. The following images below haven beespent for the surface extraction process (Voxetmotggons).

included to give further impressions of what isgilds with
volumetric terrains in general.

In Fig. 15, we demonstrate that our method cardbptad
to conventional height-maps as well, where the Htaitap
serves as source for the CB volume data. The heightand
the color-texture are public available on the US&&8/ers
[21]. The major difference by rendering height-maps

As for the procedural volume data generation, duires
relatively less time, which is a result of the eoypld caching
scheme. If caching is switched on, about 80% ofBssC
volume data can be reused during a CB update, which
reduces the average time for the procedural cortipufaom
100ms to about 20ms.

In the lower half of Table 1, different CB resotuts are

volume based methods to conventional height-majdbas compared. To make the use of multi-threading miewr cwe

methods is the vertical resolution. While the oaiti
resolution of our volume based method is reduced @ach
level of detail, height map based methods, sudeametry
clip-maps, have a constant vertical resolution g6 bit
integer per height-map pixel.

To evaluate our method’s performance, we generated

example terrain consisting of about 50000 CSG tipes
which can be seen in Fig. 16. The hardware fomntpstas
been a dual core Pentium D 3.0 Ghz, equipped W&B 1
RAM and an Nvidia GeForce 8600 GTS graphics card.

refer to the Geometry Thread Eisread land to the Render
Thread a§hread 2 In the table, we can see that the average
time to update one CB (CB update avg.) is roughly
proportional to the number of processed voxels. eMor
generally speaking, the update frequency for a €3Blution

of 128 is sufficient for an interactive exploratiab high
quality, but it is not suited well for a fast flydugh. In this
case, either lower resolutions such as 96 or 64uted well,

or an increased number of subdivision levels cao e
helpful, as well as the earlier mentioned oppotyuta skip

To analyze the speed performance, we prepared twiie innermost CBs. In many cases, an increased etuafib

benchmarks. First, a detailed timing of the altonipipeline
in Table 1, and second an evaluation of the cootistiming
behavior of a flight lasting 222 seconds throudaralscape,
shown in Fig. 17.

In the first benchmark of Table 1, we tested timntjs for
one CB resolution (128) in detail and further coragathe
results among different CB resolutions.

In the test, 5 out of the 7 CBs are created froturme-data
(CB no. 3 to 7), whereas the two smallest (no.1 3ndre
created from subdivision and enhanced with fradedhils

subdivision-splits combined with random midpoint
displacement might even be desirable. Doing sot GBs
are not only updated faster, the terrain also veseia
completely different style, which is often more egling and
natural than the initial terrain without using sivigion. In
Fig.11 this behavior is shown in four steps, whesreh step is
equivalent to generating one more CB from subdiwisi

In the second performance test, we analyzed theefrate
continuity of our method. Often, visualization aitfums
using LOD have difficulties to provide a continuduame
rate since geometry updates are causing shors stall

% 9

rendering for many methods, which can be obsersduia
ups in the frame rate. To confirm that the propasethod

does not have this problem, we recorded benchmatik d

over a longer period of time while flying througdtetartificial
terrain of Fig. 16. The resulting diagram can bense Fig.

17. However, even at polygon-counts around 800k, th

triangle throughput remains continuous at aboutm#iion
triangles per second and does not reveal majorspéake
further regard the time to render one frame (tirasi&), we
notice that it changes smoothly in proportion te #tene’s
complexity (Polygons). Our algorithm does therefomat
reveal any problems that might occur due to the LD
frame-rate ranged from 25 to 130 frames per seeudnidh is
sufficient for interactive applications such aseddjames.

In order to measure the render quality of the Vizeg
landscapes, we analyzed the landscape of Fig. difexent
Clip-Box resolutions by disabling subdivision aeatttiring.
As a reference, we chose the highest possibleutgsothat
our hardware was able to handle, a landscape wiitip7?
Boxes at a resolution of 192. This is equivalentisoalizing
a total data volume of 12288oxels, which would require

+++

To show further application areas of our methodiclvh
exceed the world of gaming, we show that our mettaod
also serve as a 3D function grapher to visualireeigd math
problems. Our method is able to visualize any fondyam
that is defined as follows:

@

roughly 210 GB of memory, assuming each voxel is The function inputis defined as a three dimensioeger

represented by a single bit. To measure the scpze-error,
we compared the renderings of lower Clip-Box retiahs to
the reference resolution, as can be seen in Fifid8valuate
the error-map, we gray-scaled all images and maeketh
pixel as erroneous that differed more than 20range of 0

coordinate vector (Euclidian space), while the out
defined as zero (represented as air in the visuplar one
(represented as solid terrain). We have preparsualtseof
three generic functions in Fig. 19, image one teghto show
this ability. There, we visualized exclusive-or, (§w-tooth

to 255 from the reference image and hence have bed@) and sine curve (3). As the evaluation and Vizat#on are

noticeable.

The qualitative results show that we can achievad go

quality renderings if the Clip-Box resolution isleast 128.
For lower resolutions, the screen-space errorase®rapidly
and leads to more inaccuracies especially at higtard
geometry. As for the quality in general, we obseare
asymptotic error behavior, where the error is abaivted for
each increase in the resolution.

done immediate, it is further possible to alter fhection
parameters on run-time.

To demonstrate further the applicability to conierl
rendering of iso-surfaces, we included image (4hiclv
shows a forest generated from the well-known botreai
data set. We can clearly see the different leviedsnoothing,
which have been used from near to far in ordemtd the
loss of geometric details. The tree that has beewd was
rescaled to a resolution of 256nd placed in the landscape

25 times. The tree scene as well as the functatrspéne has F.Ponchio, R.Scopigno, "Adaptive tetrapuzzlescieffit
been rendered with a CB resolution of 192 at ab®tit5 fps. out-of-core construction and visualization of gigan
multiresolution polygonal models", Siggraph 2004,
796—803
[13] C.C.Tanner, C.J.Migdal, M.T.Jones, "The clipmap: A
) virtual mipmap", ACM SIGGRAPH 1998, 151-158
We have presented a novel approach that is able 134) pandromeda: http:/www.pandromeda.com visited
visualize large procedural volumetric terrains ightguality May 2011
based on nested Clip-Boxes. We even achieved iigigah ~ [15] Terragenhttp://www.terradreams.deisited 5/ 2011
12288 voxel sized cubic window of the complete [16] P.Prusinkiewicz, M.Hammel, "A Fractal Model of
landscape’s volume data at interactive frame-rats. Mountains with Rivers", Graphics Interface '93, 174
therefore believe that our method can efficienttyused to 180

visualize interesting looking terrains with so tarseen size [17] M : War), N. Zhang, .H' Qu, e'md A. Kaufman.
Interactive Stereoscopic Rendering of Voxel-based

5. Conclusion

for video-games that may change each time the piases Terrain", IEEE Virtual Reality, pages 197-206, 2000
the game by consuming only a negligible amountefary [18] G.M.Treece, R.W.Prager and A. H. Gee, " Regularised
on the mass-storage device and only posing minéffiaft marching tetrahedra: improved iso-surface extractjo
for the artist. Computers and Graphics 1998, 23(4):583-598

[19] LR. Hermann, "Laplacian-lsoparametric Grid
References Generation Scheme", J. of the Engineering Mechanics

Division of the American Society of Civil Enginegers
102:749-756, 1976.

[20] Ryan Geiss, Michael Thompson, “NVIDIA Demo Team
Secrets — Cascades”, technical presentation @dhee

[1] Duchaineau, M.Wolinsky, D.E.Sigeti, M.C.Miller,
C.Aldrich, M.B.Mineev-Weinstein, "ROAMing terrain:
B e one Ty, | DeWloprs Confrence 200
R.enderin, Uéin p[?\le,sted Re l?llar Gprids'l‘o .Si ra h[21] United States Geological =~ Survey (USGS)
9 9 9 » >lggrap http://mww.usgs.goy visited May 2011

2004, 769-776
’ . N . . ., [22] Tao Ju and Frank Losasso and Scott Schaefer and Joe
[3] W.E.Lorensen, H.E.Cline, "Marching cubes: A high Warren, ‘Dual contouring of hermite data’,

resoluton 3D surface construction algorithm®”, SIGGRAPH 02, 339—346

SIGGRAPH '87, 163—169 ' . :
. ; . [23] Times: "Computer games to out-sell music and video”
[4] B. Gregorski, “Interactive View-Dependent Rendering http://business.timesonline.co.uk/tol/businesskiju s

of Large IsoSurfaces”, Visualization 2002, 475 4 48 - —
; ’ : ectors/technology/article5085685.ece (visited May
[5] Aaron Knoll, "A Short Survey of Octree Volume 2011)

Rendering Techniques®, Gl Lecture Notes in
Informatics, Proceedings of 1st IRTG Workshop, June[24] Adrien Peytavie and Eric Galin and Stephane Merillo

14-16 2006, Dagstuhl, Germany and Jerome Grosjean: "Arches: a Framework for

[6] C.Erikson, D.Manocha, W.Baxter, "HLODs for faster Modeling Complex Terrains®, Eurographics 2009,

.) . . \olume 28, pp.457—467
display of large static and dynamic environment8DS) .
‘01, 2001, 111—120 [25] MSNBC: Top video games may soon cost more,

http://www.msnbc.msn.com/id/3078404/ Visited

[7] P.Lindstrom, "Out-of-Core Construction and 5/2011
\zfggshégf'logzc’f Muliresolution Surfaces”, SISD30 1561 Analysis: Trends in the Japanese Game Market

http://mww.gamasutra.com/php-
bin/news_index.php?story=20464isited May 2011
[27] Avatar the movie (visited May 2011):
http://en.wikipedia.org/wiki/Avatar %282009 film%29
[28] Ken Perlin: Perlin Noise (visited July 2011)
http://en.wikipedia.org/wiki/Perlin _noise

[8] Coat 3D V3 Voxel sculpting: (visited May 2011)
http://mww.3d-coat.com/v3_voxel sculpting.html

[9] L. Borgeat, G. Godin, F.Blais, P.Massicotte, C.lrad¥a
"GoLD: Interactive Display of Huge Colored and
Textured Models", Siggraph 2005, 869 — 877

[10] E.Gobbetti, F.Marton, "Far Voxels: A Multi-resolorti
Frame-work for Huge Complex 3D Models", Siggraph
2005, 878 — 885

[11] S.Rusinkiewicz, M.Levoy, “QSplat: A Multi-resolutio
Point Rendering System for Large Meshes” Siggraph
2000, 343 - 352

[12] P.Cignoni, F.Ganovelli, = E.Gobbetti, = F.Marton,

10

57+6 "
7,4

<53%

$

11

