

Visualizing Large Procedural Volumetric Terrains Using Nested Clip-Boxes

Sven Forstmann† and Jun Ohya†

Abstract

This paper proposes a novel terrain-rendering method

based on nested Clip-Boxes to visualize massive procedural

volumetric terrains. In our method, the terrain is defined as a

three dimensional function, provided by the user, which

generates appealing looking, unique volumetric terrain shapes.

For the visualization, we sample the function in a user

defined quadratic view-region around the viewpoint and store

the result as voxel volume data in a first step. In the second

step, the volume data is converted into a triangle mesh for the

hardware accelerated visualization. To provide high quality

rendering as well as high computational performance, we

employ level of detail by introducing a novel nested Clip Box

strategy. Our results show, that using our strategy, 25 frames

per second can be achieved on average for a highly detailed

landscape. Different from existing methods, ours is the first to

allow the immediate visualization of arbitrary sized

volumetric terrains in real-time, as it does not depend on any

pre-computation.

1. Introduction

1.1 Background

 Video games have been popular since their very inception,

and their popularity has continued to grow since then. In

2008, video games yielded a market larger in revenue than

the movie and music industries [23]. In the video game

market, especially Japan plays a significant role as it’s share

is, with a revenue of over $7 Billion as of 2008 [26], the

world’s second largest. Despite the increase in revenue,

however, development costs have also dramatically increased.

For many productions, development costs are approaching or

exceeding the revenue of the respective video game [25].

Thus cutting costs is very important in this industry.

In general, a large component of the development cost is

the cost of labor for content generation [25]. Since video

game users constantly demand new, larger, and more detailed

virtual-worlds, the current system of labor-intensive content

generation is not sustainable. Therefore, automated content

generation is a viable way to greatly reduce development

costs.

 As users tend to get bored if the same contents are

presented each play, the demand for different contents in each

play in one video game increases.

In walk-through type of games, the size of a level is normally

limited. This is mainly due to hardware constraints, such as

the capacity of the disk space and data transfer rates as

content is pre-generated and just displayed at game-time. If

not very carefully exercised, this often results in a limited

walk-through range, or a mere repetition of the plays of the

same level already experienced. Hence, the users will become

bored. In order to mitigate such effects, the walk-through

range should not be experienced as limited, and there should

not be any repetition within a given level.

 However, repetition is not the only issue. Content detail

and flexibility is a problem as well. Conventionally, height-

map based methods were used for rendering terrain [1,2].

While height-map based approaches are largely sufficient for

video games featuring isometric perspective such as real-time

tactics, first person games demand more interesting

landscapes, including concaves and overhangs. Therefore,

recently height-maps were step-by-step replaced by

volumetric terrains [14,20,24] so that more variable terrain

landscapes, including concavities and overhangs, could be

generated.

 The creation of these complicated, and thus interesting,

volumetric terrains necessary for long-range walk-through

environments can either be achieved by manual operations

[8], or procedural methods [20,24]. Manual creation by

content creators is expensive in terms of time and financial

cost and thus should be reduced as much as possible.

Procedural methods save time for creators, however, they

produce huge amounts of data, which needs to be stored and

loaded again on run-time. To solve this issue, procedural

methods need to be integrated into the video game for

generating contents at run-time.

1.2 Related Work

 Related works can be found in various areas: Academia,

video games, and general applications. Previous related work

focused either on generating procedural terrains in an offline

process, or on the visualization of large and detailed three-

dimensional objects in real-time.

 We therefore review two separate types of algorithms.

First, algorithms used to generate procedural terrains, and

second, algorithms used to visualize large and detailed three-

dimensional objects.

† Global Information and Telecommunication Institute, Waseda University

 2

1.2.1 Procedural terrains

 In games, procedural terrain generation has already been

used. An example of this is the successful video game “The

Elder Scrolls II: Daggerfall”, by Bethesda Software. A

massive sized terrain (a flat map, no height information) was

one of the main elements of this game.

 In academia, procedural terrains can be found as well. P.

Prusinkiewicz has developed a method to create fractal

height-map based terrains [16]. More advanced is the method

of A. Peytavie et. Al. [24]. He has proposed an algorithm to

automatically generate large volumetric terrains including

caves and overhangs. As in our method, also his method uses

volume data for the creation of the terrain.

 In other areas, non-game and non-academic, procedural

terrain generation has been developed as well. Terragen [15]

allows the generation of arbitrary, height-map based terrains.

In Pandromeda [14], height-map based terrains and also

volumetric terrains can be generated. In both, [14] and [15],

the user can freely choose a terrain function. A method that

generates a volumetric terrain for the visualization in real-

time, is the NVidia Cascades Demo [20]. There, the terrain

function is fixed to Perlin Noise [28].

 However, all related works create the terrain as an offline

process, even though they support to visualize it in real-time

as in [20]. There is no algorithm available yet that supports

the dynamic generation of procedural volume data on the fly

in parallel to the visualization process.

1.2.2 Visualization of large 3D Objects

 Since our algorithm visualizes the terrain volume data as

polygonal mesh, we also review methods that visualize large

and detailed objects, which consist of either polygonal mesh

data or opaque volume data.

 One published algorithm is [17], where the terrain is

represented by a 512x512x64 voxel grid, and visualized by

using multi-resolution raycasting.

 As for the interactive visualization of large iso-surfaces

from volume data, Gregorski et al. [4] present a method that

recursively subdivides the scene into diamonds based on pre-

calculated error-values. The method is basically a three-

dimensional extension of the height-map based terrain

rendering method that is known as ROAM [1], and converts

the input data into a special format in a pre-processing step.

For visualizing large meshes, several methods have been

invented. Most of them, such as [6,12], cluster the input mesh

in multi-resolution shapes, such as cuboids or tetraeders.

They have to be created in a pre-computation step for the

dynamic assembly at runtime. The approach presented by

Lindstrom [7] is similar. In his method, vertices are clustered

in a hierarchical fashion to achieve the view-dependent LOD.

Other related approaches propose the usage of point sprites,

also known as splats, for representing the scene [10,11]. In

[10], a combination of splats and polygons is used, where

polygons solve the geometry near the viewpoint and splats

are used for distant geometry.

 A method that utilizes a LOD structure, which is similar to

ours, is called GoLD [9]. Here, the mesh resolution is

continuously reduced according to distance by switching

among several pre-computed detail levels of the initial mesh.

The LODs are computed by vertex removal in order to enable

a smooth transition by geo-morphing.

 However, none of the methods [6,7,9,10,11,12] is suitable

for visualizing large on the fly generated volumetric terrain

data. All of the aforementioned approaches require intensive

preprocessing of the full data set—prior to visualization, and

they have to store the complete terrain data to be visualized.

Besides the large amount of resources necessary during

preprocessing of polygon or volume data as in [10], to create

the run-time structure, it is easily visible that the amount of

data generated obviates the application of large walk-through

ranges.

1.3 Proposed Method

To solve the problems above, we propose a method that

can efficiently visualize 3D terrain data that is generated on

the fly by a function based procedural approach. Similar to

our approach, also [14,15] and [20] use functions to generate

the terrain.

The method at hand only requires the terrain functions for

generating the underlying volumetric data and their

parameters. Storing the entire volumetric data generated from

these functions is not necessary. Since any arbitrarily

expressive function can be chosen for data generation, the

walk-through range and the number of levels are limited only

by the parametric range of the function. Due to the possible

large range of variations, there is a rich number of distinct

concavities, overhangs, and other interesting structures that

can be generated in run-time. Note, that as procedural

creation of volumetric terrains is already addressed by

various methods such as [14,15,20,24], the main focus of this

paper is on generating the visualized terrain immediately on

the fly, without relying on any pre-processed data. Different

from the proposed method, [14,15,20,24] are not able to

create and update the terrain data in parallel to the real time

visualization.

 3

 Our method provides the following benefits.

• Visualize arbitrary massive terrains, including interesting

structures such as concaves and overhangs at interactive

frame-rates.

• The amount of manual labor necessary for content

creation is reduced

• The walk-through range of a level is potentially unlimited.

• The number of terrains that can be generated is only

limited by the number of outputs of the procedural

generation function.

• The terrain data is generated on the fly, in parallel to the

visualization.

 The paper is organized as follows: Section 2 overviews the

paper; section 3 explains the clip-box algorithm; section 4

discusses the experimental results; and section 5 concludes

the paper.

2. Overview

 Our landscape visualization method merges terrain

synthetization and visualization in one system. The terrain

itself is defined as three dimensional function defined by the

user. For the visualization, the function is sampled in a cubic

region around the view point, and stored as volume data. For

the hardware accelerated visualization on the GPU, the

volume data is converted into triangle data. The conversion

from volume data to triangles is very similar to visualizing

iso-surfaces and can be solved by using one of the

conventional algorithms such as marching cubes [3].

However, as the amount of triangles arising from direct

volume data to polygon conversion is immense, we have to

employ an efficient level-of-detail (LOD) approach to our

system. This is necessary to keep the polygon-count

reasonable for today’s graphics hardware.

 Nested geometry clip-maps, which derive from clip-maps

[13], provide all of our desired features for the two-

dimensional height-map based case – however, they cannot

solve the three-dimensional volume-data based case.

 We hence extend the clip-map based terrain visualization

approach of Lossaso and Hoppe [2] on geometry clip-maps to

the third dimension by introducing nested clip-boxes, shown

in Fig.1. They have very similar properties to clip-maps, but

are unlike more complex. Fig. 2 shows an example of a

single Clip-Box (CB). In contrast to clip-maps, where nested

regular grids suffice to represent the geometry (Fig. 1), CBs

carry complex, rapidly changing mesh-topologies. While

each geometry clip-map is represented as a rectangular

portion of the landscape’s height-map, each clip-box

represents the iso-surface of a cubic portion of the terrain

volume data.

Fig.1. The evolution from Clip-Map to Clip-Box: Nested

geometry clip-maps [6] are shown top left; our Clip-Box

based approach as sketch is top right and the final result as a

wire-frame below.

Fig.3. Algorithm Overview: Using two threads helps to

optimally distribute the rendering and voxel to polygon

conversion tasks on modern multi-core-CPUs.

Fig.2. The Clip-Box: The left image shows the pure Clip-

Box geometry, the right shows it embedded into the

landscape.

 4

 Our algorithm visualizes the terrain using a two-threaded

approach that is shown as a diagram in Fig.3. The first thread

with a low update rate creates the procedural volume data and

converts it into polygons. The second thread with a high

update rate continuously displays the polygons on the screen.

For the procedural terrain generation method, which

computes the landscape volume-data to be used by the

nested-clip-box algorithm, we use a relatively simple function

that produces landscapes complex enough to prove the

efficiency of our method. Since the formula for the terrain

generation can be defined by the user, we do not focus on

inventing a novel formula. However, we refer to three

interesting works on offline rendered volumetric terrains that

show the large variety of possible landscapes that have been

created based on mathematical computations rather than

artistic modeling: Pandromeda Mojoworld [14], Terragen

[15] and Arches [24]. The references show that volumetric

terrains can be much more interesting than height map based

terrains – even though they might not be always realistic.

Especially in the area of entertainment, realism often is not

the main purpose. One of the most successful movies ever,

“Avatar” [27], might be the best example. There, a fantasy

world called Pandora, with large floating rocks has been one

of the main elements in the movie.

3. Clip-Box Algorithm

 Our nested Clip-Box algorithm utilizes a simple and

efficient structure to represent the terrain mesh. Similar to [2],

where the terrain geometry is cached in a set of nested regular

grids, our algorithm caches the geometry in a set of nested

Clip-Boxes (Fig.1). Once the viewpoint changes, all Clip-

Box positions are updated incrementally to preserve the

concentric LOD structure.

3.1 Clip-Box

 We define a Clip-Box (CB) as the polygonal conversion of

a cubic portion of the entire terrain’s volume data. This can

be seen clearly in Fig. 2, where a pure CB is shown in the left

image. The right image shows it embedded into the

surrounding landscape. Unlike clip-maps [2], which remain

simple regular grids with near constant complexity over time,

CBs strongly vary in their complexity as they are shifted

through the volume data.

3.2 Data Structure

 For each CB, we store the 8-bit volume data where each

voxel is either set (opaque) or unset (transparent). The

polygon data that is created from conversion consists of

triangle strips where each vertex inside the strip carries x- y-

and z- coordinates as well as a normal vector.

 In addition to these two structures, we further store

adjacency information for each voxel to speed up the voxel to

polygon conversion process. The links (32-Bit pointers) that

we have introduced can be seen in Fig.4. They are utilized as

follows:

• Voxel to vertex. Required for inserting a new vertex. It is

used to check whether a vertex has already been created

for the specific voxel.

Fig.4. Adjacency information: Introducing adjacency

information helps to speed up polygon extraction and allows

for efficient triangle-stripification.

Fig.5. Landscape synthetization: Complex shapes can

easily be created using simple CSG operations.

Fig.6. Clip-Box connectivity: The simple method (left)

shows an erroneous gap, while the improved version (right)

solves this problem.

 5

• Vertex to vertex. Required for quick smoothing. Each

vertex has a list of references to maximal 6 connected

points.

• Surface to surface. Required for seeking triangle-strips.

Each surface refers to all neighboring surfaces.

• Surface to vertex. Required to access vertices for

rendering each surface.

• Vertex to surface. Required for connecting new surfaces.

The reference also helps to add the surface-to-surface

connections instantly.

3.3 Procedural Volume-Data Creation

 To verify our algorithms’ feasibility, we employ a basic

procedural volumetric method to generate terrains that are

complex enough for testing our algorithm. We therefore

apply constructive solid geometry (CSG) operations to the

volume data as in Fig.5. We procedurally add and subtract

thousands of spheres from the empty voxel-volume using

Boolean operations to create complex landscapes for testing

purposes. The required parameters, size and position of each

sphere, are random values of a user-defined range.

 Our approach is similar to [20], only that our method

computes the visible terrain portions on the fly, rather than

pre-computing the entire terrain.

3.4 Volume-Data to Polygon Conversion

 As for the required basic conversion from volume data to

polygons, numerous algorithms are available such as [3], [18]

or [22]. However, since we also have to consider LOD, the

three basic algorithms are not directly applicable. We further

need to take care of the following two issues: First, how to

close breaks in the geometry at LOD boundaries efficiently

(Fig. 6) and second how to achieve a fast conversion.

Marching cubes [3] and marching tetraheda [18] achieve a

fast and appealing looking conversion from volume data to

polygons. However, they complicate welding of two LOD

boundaries and also generating adjacency information

between vertices for our desired post-processing gets more

difficult.

 We therefore simplify the conversion process and regard

each voxel as a cube with six quadrilateral surfaces. This

allows us to efficiently weld bounding LOD levels together

seamlessly by further enabling the fast creation of adjacency

information. The drawback of this approach is obviously a

block-like-looking initial polygonal conversion. We solve

this by geometry smoothing in a post-processing step. To

weld two LOD levels together, the conversion algorithm

considers all voxels in the bounding area of two nested CBs.

 For the conversion, our algorithm visits each voxel of the

volume-data that is enclosed by one Clip-Box and creates

surfaces - if required - by taking direct bounding neighbor

voxels in x-, y- and z-direction into account. The used

volume-data is binary; each voxel is either set or unset. We

included a simple sketch in Fig. 7 to demonstrate the voxel to

polygon conversion for the 2D case.

3.5 Nesting

Fig.9. Caching volume data: After the Clip-Box (CB) is moved,

most of the volume data can be reused and only few portions need

to be newly computed by the procedural terrain generation

algorithm.

Fig.7. Voxel to polygon conversion: Surfaces are created by

analyzing each voxels bounding neighbors in +x, +y and +z

direction.

Fig.8. Moving the viewpoint: In the event that the viewpoint

is only moved slightly, it is sufficient to update the inner Clip-

Box and let the outer remain at the same position.

 6

 Nesting is required by our algorithm to achieve LOD,

which helps to reduce the number of triangles. The LOD is

already shown in Fig. 1. The scale factor for the Clip-Boxes

increases exponentially by the power of two, while the

number of voxels contained by each Clip-Box remains

constant. For example, the size of CB one is 100x100x100,

the size of CB two is 200x200x200 and so on – however, the

number of voxels contained by each CB is constantly 1003.

This means for CB one, the voxel size is one, for CB two the

voxel size is two, for CB three it is four and so forth. In Fig. 1

we can see that for each CB, all geometry that would interfere

with the next inner CB has to be omitted from rendering.

 It is also important that all CBs are connected seamlessly

without exhibiting gaps at the border- geometry. Gaps occur

if the boundaries of two nested CBs are not well connected,

as demonstrated in Fig.6. Therefore, once the creation of a

CB is finished, bordering vertices are connected properly to

the next outer CB to avoid gaps. This can be achieved

efficiently by exploiting pointers in the data-structure.

3.6 Moving the View-Point

 To fully understand the entire algorithm, it is further

necessary to know what happens in case the view-point is

moved. In the event that the viewpoint is moved, Fig. 8, it is

important to verify all Clip-Box positions in order to preserve

our concentric LOD structure. In an ideal case, all Clip-Boxes

are permanently centered about the viewpoint, even if the

observer starts moving. However, it is impossible to update

all Clip-Boxes fast enough. We therefore update inner Clip-

Boxes often and outer ones only rarely, as done in Losasso

[2]. This approach becomes self-evident when the four steps

in Fig. 8 are reviewed. For example the viewpoint change

from step 1 to 2 only requires the inner CB to be updated.

The outer CB remains at its position, as the viewpoint change

is not significant enough. Moving only the inner CB is

possible, as the outer CB accommodates all geometry that is

enclosed by its volume and can hence cover up for the gap

arising from the move of the inner CB. A further advantage

of this approach is that we can dynamically adjust the number

of triangles on the screen by simply skipping the innermost

Clip-Boxes.

 To minimize the amount of newly computed procedural

volume data in the event of a Clip-Box-update, we cache the

previously computed data and only perform differential

updates (Fig. 9). The updated portions are referred to as

newly computed data inside the Figure.

Fig.10. Geometry-processing: The four images show the

proposed steps to process the initial mesh: (1) direct

conversion from volume data (2) smoothed (3) surface

subdivision (4) synthetic details.

Fig.11. Fractal details: Increasing the number of CBs

generated from surface subdivision plus random midpoint

displacement often leads to more natural and appealing

terrains (image 4) than the initial result (image 1).

Fig.12. Triangle subdivision: For each vertex, three

additional vertices are inserted as above to preserve the near

regular grid structure of our Clip-Box mesh.

 7

3.7 Geometry Post-Processing

After the surfaces are obtained, we apply smoothing by

Laplacian filtering [19]. This significantly improves the

visual quality, since the mesh is very block-like after the

initial conversion. In Fig. 10, the difference between image

one and two is clearly visible, as image one shows the

immediate result after conversion, while image two shows

the smoothed geometry.

 In the event that a high update-rate for small CB’s near the

viewpoint is desired, our algorithm enables fast creation of

Clip-Box geometry from surface subdivision, rather than

using the more complex extraction from volume-data. Fig.11

shows the result of creating the innermost one to four CBs

from surface subdivision. Subdivision is done according to

Fig. 12.

 Even though we do not propose a novel terrain generation

method, we added a post processing effect that helps make

the generated terrain look more interesting. Our method

therefore supports synthetic details by random midpoint

displacement [16]. The effect can be seen in Fig. 10, images

three and four.

3.8 Implementation Details

 Our algorithm has been implemented by using C++. For

the graphics API, OpenGL has been employed. We use a

two-thread approach to separate geometry processing from

rendering (Fig. 3). This approach maps well to the current

generation of multi-core processors, as each thread is able to

occupy one core. Each thread uses the corresponding CPU

core to 100 percent continuously. Load balancing has not

been implemented. The task distribution of the two threads is

as follows:

 The geometry thread is in charge of computing the CB’s

mesh. This involves polygon extraction from voxel data,

triangle subdivision, mesh smoothing and random midpoint

displacement (Synthetic details). To further improve the

performance, we added a module to group all surfaces into

triangle strips, allowing cache-optimal rendering. This is done

by a depth-first search, utilizing the surface-to-surface

connectivity information.

 Thread two, the rendering thread, is in charge of rendering

all CB meshes correctly by sparing the triangles of the next

smaller CB inside. As it runs parallel to the first thread, we

have to be aware of concurrent use of the mesh data. We

solved this by implementing a double-buffer system, where

each mesh buffer is assigned to one thread. Then, once a CB

update is completed, the buffers are swapped synchronously.

 In case of low voxel resolutions with many subdivision

levels, problems near certain voxel patterns often occur that

strongly affect the smoothed result. In Fig 13, those critical

regions are emphasized with a white circle. We therefore

employed a simple filter (lower left border in the Figure 13)

that detects and reduces these patterns by search and replace.

The result (right) indicates that most of the problematic

patterns from the left image can be eliminated successfully.

3.9 Limitations

Since our method is based on volume data, the average

memory consumption is higher than conventional height-map

based methods such as geometry clip-maps.

Regarding the geometry update of a clip box in case that

the view-point is moved, this might be slightly visible in case

of low clip-box resolutions.

Fig.13. Smoothing errors: Applying a simple filter operation

on the volume data can avoid most problems (Marked by

white circles). The filter seeks the left pattern shown below

and replaces it by the right one.

Fig.14. Complex topologies: The presented method is able

to visualize arbitrary landscape topologies, which cannot be

visualized using conventional height-map based methods.

 8

4. Experimental Results

 Results from our method can be seen in Fig. 14, where

numerous landscapes demonstrate the variety of terrains that

might be visualized. The upper image shows a terrain that is

additionally enhanced by shaders for the grass and

handcrafted items to demonstrate the applicability for

computer games. The following images below have been

included to give further impressions of what is possible with

volumetric terrains in general.

 In Fig. 15, we demonstrate that our method can be adapted

to conventional height-maps as well, where the height-map

serves as source for the CB volume data. The height-map and

the color-texture are public available on the USGS servers

[21]. The major difference by rendering height-maps in

volume based methods to conventional height-map based

methods is the vertical resolution. While the vertical

resolution of our volume based method is reduced with each

level of detail, height map based methods, such as geometry

clip-maps, have a constant vertical resolution such as 16 bit

integer per height-map pixel.

 To evaluate our method’s performance, we generated an

example terrain consisting of about 50000 CSG operations,

which can be seen in Fig. 16. The hardware for testing has

been a dual core Pentium D 3.0 Ghz, equipped with 1GB

RAM and an Nvidia GeForce 8600 GTS graphics card.

To analyze the speed performance, we prepared two

benchmarks. First, a detailed timing of the algorithm pipeline

in Table 1, and second an evaluation of the continuous timing

behavior of a flight lasting 222 seconds through a landscape,

shown in Fig. 17.

 In the first benchmark of Table 1, we tested the timings for

one CB resolution (128) in detail and further compared the

results among different CB resolutions.

In the test, 5 out of the 7 CBs are created from volume-data

(CB no. 3 to 7), whereas the two smallest (no.1 and 2) are

created from subdivision and enhanced with fractal details

(random mid-point displacement). The equivalent of the

visualized data volume has been 20483 voxels.

 As for the timing evaluation, we can see that most time is

spent for the surface extraction process (Voxels to polygons).

As for the procedural volume data generation, it requires

relatively less time, which is a result of the employed caching

scheme. If caching is switched on, about 80% of a CB’s

volume data can be reused during a CB update, which

reduces the average time for the procedural computation from

100ms to about 20ms.

 In the lower half of Table 1, different CB resolutions are

compared. To make the use of multi-threading more clear, we

refer to the Geometry Thread as Thread 1 and to the Render

Thread as Thread 2. In the table, we can see that the average

time to update one CB (CB update avg.) is roughly

proportional to the number of processed voxels. More

generally speaking, the update frequency for a CB resolution

of 128 is sufficient for an interactive exploration at high

quality, but it is not suited well for a fast flythrough. In this

case, either lower resolutions such as 96 or 64 are suited well,

or an increased number of subdivision levels can also be

helpful, as well as the earlier mentioned opportunity to skip

the innermost CBs. In many cases, an increased number of

subdivision-splits combined with random midpoint

displacement might even be desirable. Doing so, most CBs

are not only updated faster, the terrain also receives a

completely different style, which is often more appealing and

natural than the initial terrain without using subdivision. In

Fig.11 this behavior is shown in four steps, where each step is

equivalent to generating one more CB from subdivision.

 In the second performance test, we analyzed the frame-rate

continuity of our method. Often, visualization algorithms

using LOD have difficulties to provide a continuous frame

rate since geometry updates are causing short stalls in

Fig.15. Real data: Our method may also handle conventional

height-map data. Here the Puget Sound region in WA, USA.

Table 1. Performance analysis: In the upper row, update and

render times for one CB resolution (128) are analyzed in

detail, while the lower row compares the performance of

different CB resolutions.

 9

rendering for many methods, which can be observed as hic-

ups in the frame rate. To confirm that the proposed method

does not have this problem, we recorded benchmark data

over a longer period of time while flying through the artificial

terrain of Fig. 16. The resulting diagram can be seen in Fig.

17. However, even at polygon-counts around 800k, the

triangle throughput remains continuous at about 20 million

triangles per second and does not reveal major peaks. If we

further regard the time to render one frame (time/frame), we

notice that it changes smoothly in proportion to the scene’s

complexity (Polygons). Our algorithm does therefore not

reveal any problems that might occur due to the LOD. The

frame-rate ranged from 25 to 130 frames per second, which is

sufficient for interactive applications such as video games.

 In order to measure the render quality of the visualized

landscapes, we analyzed the landscape of Fig. 16 at different

Clip-Box resolutions by disabling subdivision and texturing.

As a reference, we chose the highest possible resolution that

our hardware was able to handle, a landscape with 7 Clip-

Boxes at a resolution of 192. This is equivalent to visualizing

a total data volume of 122883 voxels, which would require

roughly 210 GB of memory, assuming each voxel is

represented by a single bit. To measure the screen-space-error,

we compared the renderings of lower Clip-Box resolutions to

the reference resolution, as can be seen in Fig.18. To evaluate

the error-map, we gray-scaled all images and marked each

pixel as erroneous that differed more than 20 in a range of 0

to 255 from the reference image and hence have been

noticeable.

 The qualitative results show that we can achieve good

quality renderings if the Clip-Box resolution is at least 128.

For lower resolutions, the screen-space error increases rapidly

and leads to more inaccuracies especially at high distant

geometry. As for the quality in general, we observe an

asymptotic error behavior, where the error is about halved for

each increase in the resolution.

To show further application areas of our method, which

exceed the world of gaming, we show that our method can

also serve as a 3D function grapher to visualize general math

problems. Our method is able to visualize any function fMath

that is defined as follows:

�����:	�
	 → �0,1� (1)

The function input is defined as a three dimensional integer

coordinate vector (Euclidian space), while the output is

defined as zero (represented as air in the visualizer) or one

(represented as solid terrain). We have prepared results of

three generic functions in Fig. 19, image one to three, to show

this ability. There, we visualized exclusive-or (1), saw-tooth

(2) and sine curve (3). As the evaluation and visualization are

done immediate, it is further possible to alter the function

parameters on run-time.

To demonstrate further the applicability to conventional

rendering of iso-surfaces, we included image (4), which

shows a forest generated from the well-known bonsai tree

data set. We can clearly see the different levels of smoothing,

which have been used from near to far in order to limit the

loss of geometric details. The tree that has been used was

rescaled to a resolution of 2563 and placed in the landscape

Fig.17. Continuous performance: We recorded a flight

lasting 222 seconds into the example landscape of Fig.16

and captured the amount of polygons, the elapsed time per

frame and the render performance in million polygons per

second. The CB resolution has been set to 1283 for this test.

Fig.16. Benchmark scenario: Various screenshots of the

terrain used in our performance measurements.

 10

25 times. The tree scene as well as the function plot scene has

been rendered with a CB resolution of 192 at about 10-15 fps.

5. Conclusion

 We have presented a novel approach that is able to

visualize large procedural volumetric terrains at high quality

based on nested Clip-Boxes. We even achieved visualizing a

122883 voxel sized cubic window of the complete

landscape’s volume data at interactive frame-rates. We

therefore believe that our method can efficiently be used to

visualize interesting looking terrains with so far unseen size

for video-games that may change each time the player starts

the game by consuming only a negligible amount of memory

on the mass-storage device and only posing minimal effort

for the artist.

References

[1] Duchaineau, M.Wolinsky, D.E.Sigeti, M.C.Miller,

C.Aldrich, M.B.Mineev-Weinstein, "ROAMing terrain:

real-time optimally adapting meshes", VIS'97, 81—88

[2] F.Losasso, H.Hoppe, "Geometry Clipmaps: Terrain

Rendering Using Nested Regular Grids", Siggraph

2004, 769-776

[3] W.E.Lorensen, H.E.Cline, "Marching cubes: A high

resolution 3D surface construction algorithm",

SIGGRAPH '87, 163—169

[4] B. Gregorski, “Interactive View-Dependent Rendering

of Large IsoSurfaces”, Visualization 2002, 475 – 484

[5] Aaron Knoll, "A Short Survey of Octree Volume

Rendering Techniques", GI Lecture Notes in

Informatics, Proceedings of 1st IRTG Workshop, June

14-16 2006, Dagstuhl, Germany

[6] C.Erikson, D.Manocha, W.Baxter, "HLODs for faster

display of large static and dynamic environments",SI3D

'01, 2001, 111—120

[7] P.Lindstrom, "Out-of-Core Construction and

Visualization of Multiresolution Surfaces", SI3D '03,

2003, 93-102

[8] Coat 3D V3 Voxel sculpting: (visited May 2011)

http://www.3d-coat.com/v3_voxel_sculpting.html

[9] L. Borgeat, G. Godin, F.Blais, P.Massicotte, C.Lahanier,

"GoLD: Interactive Display of Huge Colored and

Textured Models", Siggraph 2005, 869 – 877

[10] E.Gobbetti, F.Marton, "Far Voxels: A Multi-resolution

Frame-work for Huge Complex 3D Models", Siggraph

2005, 878 – 885

[11] S.Rusinkiewicz, M.Levoy, “QSplat: A Multi-resolution

Point Rendering System for Large Meshes” Siggraph

2000, 343 – 352

[12] P.Cignoni, F.Ganovelli, E.Gobbetti, F.Marton,

F.Ponchio, R.Scopigno, "Adaptive tetrapuzzles: efficient

out-of-core construction and visualization of gigantic

multiresolution polygonal models", Siggraph 2004,

796—803

[13] C.C.Tanner, C.J.Migdal, M.T.Jones, "The clipmap: A

virtual mipmap", ACM SIGGRAPH 1998, 151-158

[14] Pandromeda: http://www.pandromeda.com, visited

May 2011

[15] Terragen: http://www.terradreams.de, visited 5/ 2011

[16] P.Prusinkiewicz, M.Hammel, "A Fractal Model of

Mountains with Rivers", Graphics Interface '93, 174-

180

[17] M. Wan, N. Zhang, H. Qu, and A. Kaufman.

"Interactive Stereoscopic Rendering of Voxel-based

Terrain", IEEE Virtual Reality, pages 197-206, 2000

[18] G.M.Treece, R.W.Prager and A. H. Gee, " Regularised

marching tetrahedra: improved iso-surface extraction ",

Computers and Graphics 1998, 23(4):583-598

[19] L.R. Hermann, "Laplacian-Isoparametric Grid

Generation Scheme", J. of the Engineering Mechanics

Division of the American Society of Civil Engineers,

102:749-756, 1976.

[20] Ryan Geiss, Michael Thompson, “NVIDIA Demo Team

Secrets – Cascades”, technical presentation at the Game

Developers Conference 2007

[21] United States Geological Survey (USGS)

http://www.usgs.gov , visited May 2011

[22] Tao Ju and Frank Losasso and Scott Schaefer and Joe

Warren, “Dual contouring of hermite data”,

SIGGRAPH '02, 339—346

[23] Times: ”Computer games to out-sell music and video”,

http://business.timesonline.co.uk/tol/business/industry_s

ectors/technology/article5085685.ece (visited May

2011)

[24] Adrien Peytavie and Eric Galin and Stephane Merillou

and Jerome Grosjean: "Arches: a Framework for

Modeling Complex Terrains", Eurographics 2009,

Volume 28, pp.457—467

[25] MSNBC: Top video games may soon cost more,

http://www.msnbc.msn.com/id/3078404/ ,visited

5/2011

[26] Analysis: Trends in the Japanese Game Market:

http://www.gamasutra.com/php-

bin/news_index.php?story=20461 , visited May 2011

[27] Avatar the movie (visited May 2011):

http://en.wikipedia.org/wiki/Avatar_%282009_film%29

[28] Ken Perlin: Perlin Noise (visited July 2011)

http://en.wikipedia.org/wiki/Perlin_noise

 11

Fig.18. Screen-space error: The highest Clip-Box resolution

(192) was compared to the lower Clip-Box resolutions 64,

96, 128 and 160. (Subdivision has been disabled for this test)

Fig.19. Function plotting and real data: Our method can be

applied to visualizing mathematical problems in an

interactive walk-through, images one to three, as well as for

conventional iso-surfaces in image four.

