

Visualizing Large Procedural Volumetric Terrains Using Nested Clip-Boxes

��

Sven Forstmann� and Jun Ohya�
��
Abstract

This paper proposes a novel terrain-rendering method
based on nested Clip-Boxes to visualize massive procedural
volumetric terrains. In our method, the terrain is defined as a
three dimensional function, provided by the user, which
generates appealing looking, unique volumetric terrain shapes.
For the visualization, we sample the function in a user
defined quadratic view-region around the viewpoint and store
the result as voxel volume data in a first step. In the second
step, the volume data is converted into a triangle mesh for the
hardware accelerated visualization. To provide high quality
rendering as well as high computational performance, we
employ level of detail by introducing a novel nested Clip Box
strategy. Our results show, that using our strategy, 25 frames
per second can be achieved on average for a highly detailed
landscape. Different from existing methods, ours is the first to
allow the immediate visualization of arbitrary sized
volumetric terrains in real-time, as it does not depend on any
pre-computation.

1. Introduction

1.1 Background

�� Video games have been popular since their very inception,
and their popularity has continued to grow since then. In
2008, video games yielded a market larger in revenue than
the movie and music industries [23]. In the video game
market, especially Japan plays a significant role as it’s share
is, with a revenue of over $7 Billion as of 2008 [26], the
world’s second largest. Despite the increase in revenue,
however, development costs have also dramatically increased.
For many productions, development costs are approaching or
exceeding the revenue of the respective video game [25].
Thus cutting costs is very important in this industry.

In general, a large component of the development cost is
the cost of labor for content generation [25]. Since video
game users constantly demand new, larger, and more detailed
virtual-worlds, the current system of labor-intensive content
generation is not sustainable. Therefore, automated content
generation is a viable way to greatly reduce development
costs.
�� As users tend to get bored if the same contents are
presented each play, the demand for different contents in each

play in one video game increases.
In walk-through type of games, the size of a level is normally
limited. This is mainly due to hardware constraints, such as
the capacity of the disk space and data transfer rates as
content is pre-generated and just displayed at game-time. If
not very carefully exercised, this often results in a limited
walk-through range, or a mere repetition of the plays of the
same level already experienced. Hence, the users will become
bored. In order to mitigate such effects, the walk-through
range should not be experienced as limited, and there should
not be any repetition within a given level.
�� However, repetition is not the only issue. Content detail
and flexibility is a problem as well. Conventionally, height-
map based methods were used for rendering terrain [1,2].
While height-map based approaches are largely sufficient for
video games featuring isometric perspective such as real-time
tactics, first person games demand more interesting
landscapes, including concaves and overhangs. Therefore,
recently height-maps were step-by-step replaced by
volumetric terrains [14,20,24] so that more variable terrain
landscapes, including concavities and overhangs, could be
generated.
�� The creation of these complicated, and thus interesting,
volumetric terrains necessary for long-range walk-through
environments can either be achieved by manual operations
[8], or procedural methods [20,24]. Manual creation by
content creators is expensive in terms of time and financial
cost and thus should be reduced as much as possible.
Procedural methods save time for creators, however, they
produce huge amounts of data, which needs to be stored and
loaded again on run-time. To solve this issue, procedural
methods need to be integrated into the video game for
generating contents at run-time.

1.2 Related Work

�� Related works can be found in various areas: Academia,
video games, and general applications. Previous related work
focused either on generating procedural terrains in an offline
process, or on the visualization of large and detailed three-
dimensional objects in real-time.
�� We therefore review two separate types of algorithms.
First, algorithms used to generate procedural terrains, and
second, algorithms used to visualize large and detailed three-
dimensional objects.

�
����������	
����
��	��	�����������	���
��	��	�
�
�
 �����������	������
� �

 2

1.2.1 Procedural terrains

�� In games, procedural terrain generation has already been
used. An example of this is the successful video game “The
Elder Scrolls II: Daggerfall”, by Bethesda Software. A
massive sized terrain (a flat map, no height information) was
one of the main elements of this game.
�� In academia, procedural terrains can be found as well. P.
Prusinkiewicz has developed a method to create fractal
height-map based terrains [16]. More advanced is the method
of A. Peytavie et. Al. [24]. He has proposed an algorithm to
automatically generate large volumetric terrains including
caves and overhangs. As in our method, also his method uses
volume data for the creation of the terrain.
�� In other areas, non-game and non-academic, procedural
terrain generation has been developed as well. Terragen [15]
allows the generation of arbitrary, height-map based terrains.
In Pandromeda [14], height-map based terrains and also
volumetric terrains can be generated. In both, [14] and [15],
the user can freely choose a terrain function. A method that
generates a volumetric terrain for the visualization in real-
time, is the NVidia Cascades Demo [20]. There, the terrain
function is fixed to Perlin Noise [28].
�� However, all related works create the terrain as an offline
process, even though they support to visualize it in real-time
as in [20]. There is no algorithm available yet that supports
the dynamic generation of procedural volume data on the fly
in parallel to the visualization process.

1.2.2 Visualization of large 3D Objects

�� Since our algorithm visualizes the terrain volume data as
polygonal mesh, we also review methods that visualize large
and detailed objects, which consist of either polygonal mesh
data or opaque volume data.
�� One published algorithm is [17], where the terrain is
represented by a 512x512x64 voxel grid, and visualized by
using multi-resolution raycasting.
�� As for the interactive visualization of large iso-surfaces
from volume data, Gregorski et al. [4] present a method that
recursively subdivides the scene into diamonds based on pre-
calculated error-values. The method is basically a three-
dimensional extension of the height-map based terrain
rendering method that is known as ROAM [1], and converts
the input data into a special format in a pre-processing step.
For visualizing large meshes, several methods have been
invented. Most of them, such as [6,12], cluster the input mesh
in multi-resolution shapes, such as cuboids or tetraeders.
They have to be created in a pre-computation step for the
dynamic assembly at runtime. The approach presented by

Lindstrom [7] is similar. In his method, vertices are clustered
in a hierarchical fashion to achieve the view-dependent LOD.
Other related approaches propose the usage of point sprites,
also known as splats, for representing the scene [10,11]. In
[10], a combination of splats and polygons is used, where
polygons solve the geometry near the viewpoint and splats
are used for distant geometry.
�� A method that utilizes a LOD structure, which is similar to
ours, is called GoLD [9]. Here, the mesh resolution is
continuously reduced according to distance by switching
among several pre-computed detail levels of the initial mesh.
The LODs are computed by vertex removal in order to enable
a smooth transition by geo-morphing.
�� However, none of the methods [6,7,9,10,11,12] is suitable
for visualizing large on the fly generated volumetric terrain
data. All of the aforementioned approaches require intensive
preprocessing of the full data set—prior to visualization, and
they have to store the complete terrain data to be visualized.
Besides the large amount of resources necessary during
preprocessing of polygon or volume data as in [10], to create
the run-time structure, it is easily visible that the amount of
data generated obviates the application of large walk-through
ranges.

1.3 Proposed Method

To solve the problems above, we propose a method that
can efficiently visualize 3D terrain data that is generated on
the fly by a function based procedural approach. Similar to
our approach, also [14,15] and [20] use functions to generate
the terrain.

The method at hand only requires the terrain functions for
generating the underlying volumetric data and their
parameters. Storing the entire volumetric data generated from
these functions is not necessary. Since any arbitrarily
expressive function can be chosen for data generation, the
walk-through range and the number of levels are limited only
by the parametric range of the function. Due to the possible
large range of variations, there is a rich number of distinct
concavities, overhangs, and other interesting structures that
can be generated in run-time. Note, that as procedural
creation of volumetric terrains is already addressed by
various methods such as [14,15,20,24], the main focus of this
paper is on generating the visualized terrain immediately on
the fly, without relying on any pre-processed data. Different
from the proposed method, [14,15,20,24] are not able to
create and update the terrain data in parallel to the real time
visualization.

 3

�� Our method provides the following benefits.

• Visualize arbitrary massive terrains, including interesting

structures such as concaves and overhangs at interactive
frame-rates.

• The amount of manual labor necessary for content
creation is reduced

• The walk-through range of a level is potentially unlimited.
• The number of terrains that can be generated is only

limited by the number of outputs of the procedural
generation function.

• The terrain data is generated on the fly, in parallel to the
visualization.

�� The paper is organized as follows: Section 2 overviews the
paper; section 3 explains the clip-box algorithm; section 4
discusses the experimental results; and section 5 concludes
the paper.

2. Overview

�� Our landscape visualization method merges terrain
synthetization and visualization in one system. The terrain
itself is defined as three dimensional function defined by the
user. For the visualization, the function is sampled in a cubic
region around the view point, and stored as volume data. For
the hardware accelerated visualization on the GPU, the

volume data is converted into triangle data. The conversion
from volume data to triangles is very similar to visualizing
iso-surfaces and can be solved by using one of the
conventional algorithms such as marching cubes [3].
However, as the amount of triangles arising from direct
volume data to polygon conversion is immense, we have to
employ an efficient level-of-detail (LOD) approach to our
system. This is necessary to keep the polygon-count
reasonable for today’s graphics hardware.
�� Nested geometry clip-maps, which derive from clip-maps
[13], provide all of our desired features for the two-
dimensional height-map based case – however, they cannot
solve the three-dimensional volume-data based case.
�� We hence extend the clip-map based terrain visualization
approach of Lossaso and Hoppe [2] on geometry clip-maps to
the third dimension by introducing nested clip-boxes, shown
in Fig.1. They have very similar properties to clip-maps, but
are unlike more complex. Fig. 2 shows an example of a
single Clip-Box (CB). In contrast to clip-maps, where nested
regular grids suffice to represent the geometry (Fig. 1), CBs
carry complex, rapidly changing mesh-topologies. While
each geometry clip-map is represented as a rectangular
portion of the landscape’s height-map, each clip-box
represents the iso-surface of a cubic portion of the terrain
volume data.

�

������� ��	� 	
��
����� ����� ���� -���� ��� ���� -����� �	��	��
�	��	���� ���� -����� � !� ��	� ���"�� ���� �	��#� �
�� ���� -����
$��	���������������%	�����������������������	������ ��	�
��������
"��	 -����	�$	��"�

�

����&�� '��������� (
	�
�	"��)����� �"�� ���	���� �	���� ���
���������� ������$
�	� ��	� �	��	����� ����
��	�� ��� ��� �����
���
	���������%��������	����
��� -���	 -�*)��

�

����+�� ��	� ���� -����� ��	� �	��� ����	� ���"�� ��	� �
�	� ���� -
���� �	��	���,� ��	� ������ ���"�� ��� 	�$	��	�� ����� ��	�
��������	�

 4

�� Our algorithm visualizes the terrain using a two-threaded
approach that is shown as a diagram in Fig.3. The first thread
with a low update rate creates the procedural volume data and
converts it into polygons. The second thread with a high
update rate continuously displays the polygons on the screen.
For the procedural terrain generation method, which
computes the landscape volume-data to be used by the
nested-clip-box algorithm, we use a relatively simple function
that produces landscapes complex enough to prove the
efficiency of our method. Since the formula for the terrain
generation can be defined by the user, we do not focus on
inventing a novel formula. However, we refer to three
interesting works on offline rendered volumetric terrains that
show the large variety of possible landscapes that have been
created based on mathematical computations rather than
artistic modeling: Pandromeda Mojoworld [14], Terragen
[15] and Arches [24]. The references show that volumetric
terrains can be much more interesting than height map based
terrains – even though they might not be always realistic.
Especially in the area of entertainment, realism often is not
the main purpose. One of the most successful movies ever,
“Avatar” [27], might be the best example. There, a fantasy
world called Pandora, with large floating rocks has been one
of the main elements in the movie.

3. Clip-Box Algorithm

�� Our nested Clip-Box algorithm utilizes a simple and
efficient structure to represent the terrain mesh. Similar to [2],
where the terrain geometry is cached in a set of nested regular
grids, our algorithm caches the geometry in a set of nested
Clip-Boxes (Fig.1). Once the viewpoint changes, all Clip-
Box positions are updated incrementally to preserve the
concentric LOD structure.

3.1 Clip-Box

�� We define a Clip-Box (CB) as the polygonal conversion of
a cubic portion of the entire terrain’s volume data. This can
be seen clearly in Fig. 2, where a pure CB is shown in the left
image. The right image shows it embedded into the
surrounding landscape. Unlike clip-maps [2], which remain
simple regular grids with near constant complexity over time,
CBs strongly vary in their complexity as they are shifted
through the volume data.

3.2 Data Structure

�� For each CB, we store the 8-bit volume data where each
voxel is either set (opaque) or unset (transparent). The
polygon data that is created from conversion consists of
triangle strips where each vertex inside the strip carries x- y-
and z- coordinates as well as a normal vector.
�� In addition to these two structures, we further store
adjacency information for each voxel to speed up the voxel to
polygon conversion process. The links (32-Bit pointers) that
we have introduced can be seen in Fig.4. They are utilized as
follows:

• Voxel to vertex. Required for inserting a new vertex. It is

used to check whether a vertex has already been created
for the specific voxel.

�

����-�� '�.��	���� ������������� /�����
����� ��.��	��� �
�������������	 ���������		��
����������	������������������"��
����	�����	����������	 -����������������

�

����0�� 1�������	� �����	��2������� �����	�� ����	�� ��� �
	������$	���	��	��
����������	��34���	��������

�

���� �� ���� -���� ����	���
����� ��	� �����	� �	����� 5�	��6�
���"�����	����	�
�����,�"���	���	������
	��
	������ 5�����6�
���
	����������$�	��

 5

• Vertex to vertex. Required for quick smoothing. Each
vertex has a list of references to maximal 6 connected
points.

• Surface to surface. Required for seeking triangle-strips.
Each surface refers to all neighboring surfaces.

• Surface to vertex. Required to access vertices for
rendering each surface.

• Vertex to surface. Required for connecting new surfaces.
The reference also helps to add the surface-to-surface
connections instantly.

3.3 Procedural Volume-Data Creation

�� To verify our algorithms’ feasibility, we employ a basic
procedural volumetric method to generate terrains that are
complex enough for testing our algorithm. We therefore
apply constructive solid geometry (CSG) operations to the
volume data as in Fig.5. We procedurally add and subtract
thousands of spheres from the empty voxel-volume using
Boolean operations to create complex landscapes for testing

purposes. The required parameters, size and position of each
sphere, are random values of a user-defined range.
�� Our approach is similar to [20], only that our method
computes the visible terrain portions on the fly, rather than
pre-computing the entire terrain.

3.4 Volume-Data to Polygon Conversion

�� As for the required basic conversion from volume data to
polygons, numerous algorithms are available such as [3], [18]
or [22]. However, since we also have to consider LOD, the
three basic algorithms are not directly applicable. We further
need to take care of the following two issues: First, how to
close breaks in the geometry at LOD boundaries efficiently
(Fig. 6) and second how to achieve a fast conversion.
Marching cubes [3] and marching tetraheda [18] achieve a
fast and appealing looking conversion from volume data to
polygons. However, they complicate welding of two LOD
boundaries and also generating adjacency information
between vertices for our desired post-processing gets more
difficult.
�� We therefore simplify the conversion process and regard
each voxel as a cube with six quadrilateral surfaces. This
allows us to efficiently weld bounding LOD levels together
seamlessly by further enabling the fast creation of adjacency
information. The drawback of this approach is obviously a
block-like-looking initial polygonal conversion. We solve
this by geometry smoothing in a post-processing step. To
weld two LOD levels together, the conversion algorithm
considers all voxels in the bounding area of two nested CBs.
�� For the conversion, our algorithm visits each voxel of the
volume-data that is enclosed by one Clip-Box and creates
surfaces - if required - by taking direct bounding neighbor
voxels in x-, y- and z-direction into account. The used
volume-data is binary; each voxel is either set or unset. We
included a simple sketch in Fig. 7 to demonstrate the voxel to
polygon conversion for the 2D case.

3.5 Nesting

�

����7�� ��������
��
�	� ������ '��	�� ��	� ���� -���� 5��6� ��� ��
	�,�

����������	�
��
�	����������$	��	
�	������������	"� ����������		��

��� $	� �	"��� ����
�	�� $�� ��	� ����	�
���� �	������ �	�	 �������

����������

�

����8��9��	����� �������� ���
	�������3
����	�� ��	��� 	��	�� $��
�����2����	����
��	���$�
������ �	���$�������:�,�:�� ����:2�
���	������

�

����;����
������	�
�	"�������/����	�	
	����������	�
�	"������
����������
	����������,��������
�����	������
����	� ��	����	������ -
���������	����	��
�	���	����������	����	����������

 6

�� Nesting is required by our algorithm to achieve LOD,
which helps to reduce the number of triangles. The LOD is
already shown in Fig. 1. The scale factor for the Clip-Boxes
increases exponentially by the power of two, while the
number of voxels contained by each Clip-Box remains
constant. For example, the size of CB one is 100x100x100,
the size of CB two is 200x200x200 and so on – however, the
number of voxels contained by each CB is constantly 1003.
This means for CB one, the voxel size is one, for CB two the
voxel size is two, for CB three it is four and so forth. In Fig. 1
we can see that for each CB, all geometry that would interfere
with the next inner CB has to be omitted from rendering.
�� It is also important that all CBs are connected seamlessly
without exhibiting gaps at the border- geometry. Gaps occur
if the boundaries of two nested CBs are not well connected,
as demonstrated in Fig.6. Therefore, once the creation of a
CB is finished, bordering vertices are connected properly to
the next outer CB to avoid gaps. This can be achieved
efficiently by exploiting pointers in the data-structure.

3.6 Moving the View-Point

�� To fully understand the entire algorithm, it is further
necessary to know what happens in case the view-point is
moved. In the event that the viewpoint is moved, Fig. 8, it is
important to verify all Clip-Box positions in order to preserve
our concentric LOD structure. In an ideal case, all Clip-Boxes
are permanently centered about the viewpoint, even if the
observer starts moving. However, it is impossible to update
all Clip-Boxes fast enough. We therefore update inner Clip-
Boxes often and outer ones only rarely, as done in Losasso
[2]. This approach becomes self-evident when the four steps
in Fig. 8 are reviewed. For example the viewpoint change
from step 1 to 2 only requires the inner CB to be updated.

The outer CB remains at its position, as the viewpoint change
is not significant enough. Moving only the inner CB is
possible, as the outer CB accommodates all geometry that is
enclosed by its volume and can hence cover up for the gap
arising from the move of the inner CB. A further advantage
of this approach is that we can dynamically adjust the number
of triangles on the screen by simply skipping the innermost
Clip-Boxes.
�� To minimize the amount of newly computed procedural
volume data in the event of a Clip-Box-update, we cache the
previously computed data and only perform differential
updates (Fig. 9). The updated portions are referred to as
newly computed data inside the Figure.

�

�����<�� 4	��	��� -����	������� ��	� ��
�� ����	�� ���"� ��	�
������	�� ��	��� ��� ����	��� ��	� �������� �	���� 5�6� ��� 	���
���
	������ �����
��
�	� ����� 5+6� ������	�� 5&6� �
����	�
�
$��
������5-6������	�����	����� �

�

�������� �������� �	������� /���	������ ��	� �
�$	�� ��� � ��
�	�	���	�� ����� �
����	� �
$��
������ ��
�� ������� ���� �����
�������	�	��� ���	�� �	���� ��� ���	� ���
���� ���� ���	�� ����
�	�������5����	�-6��������	����������	�
���5����	�� 6�

�

�����+�� �������	� �
$��
������� ���� 	����
	��	�,� ���	 	�
�����������
	����	����	����	��	������$�
	������	�	�
	���	��	���
�	�
������������
��
�	�����
������ -�����	���

 7

3.7 Geometry Post-Processing

After the surfaces are obtained, we apply smoothing by
Laplacian filtering [19]. This significantly improves the
visual quality, since the mesh is very block-like after the
initial conversion. In Fig. 10, the difference between image
one and two is clearly visible, as image one shows the
immediate result after conversion, while image two shows
the smoothed geometry.
�� In the event that a high update-rate for small CB’s near the
viewpoint is desired, our algorithm enables fast creation of
Clip-Box geometry from surface subdivision, rather than
using the more complex extraction from volume-data. Fig.11
shows the result of creating the innermost one to four CBs
from surface subdivision. Subdivision is done according to
Fig. 12.
�� Even though we do not propose a novel terrain generation
method, we added a post processing effect that helps make
the generated terrain look more interesting. Our method
therefore supports synthetic details by random midpoint
displacement [16]. The effect can be seen in Fig. 10, images
three and four.

3.8 Implementation Details

�� Our algorithm has been implemented by using C++. For
the graphics API, OpenGL has been employed. We use a
two-thread approach to separate geometry processing from
rendering (Fig. 3). This approach maps well to the current
generation of multi-core processors, as each thread is able to
occupy one core. Each thread uses the corresponding CPU
core to 100 percent continuously. Load balancing has not
been implemented. The task distribution of the two threads is
as follows:
�� The geometry thread is in charge of computing the CB’s
mesh. This involves polygon extraction from voxel data,
triangle subdivision, mesh smoothing and random midpoint
displacement (Synthetic details). To further improve the
performance, we added a module to group all surfaces into

triangle strips, allowing cache-optimal rendering. This is done
by a depth-first search, utilizing the surface-to-surface
connectivity information.
�� Thread two, the rendering thread, is in charge of rendering
all CB meshes correctly by sparing the triangles of the next
smaller CB inside. As it runs parallel to the first thread, we
have to be aware of concurrent use of the mesh data. We
solved this by implementing a double-buffer system, where
each mesh buffer is assigned to one thread. Then, once a CB
update is completed, the buffers are swapped synchronously.
�� In case of low voxel resolutions with many subdivision
levels, problems near certain voxel patterns often occur that
strongly affect the smoothed result. In Fig 13, those critical
regions are emphasized with a white circle. We therefore
employed a simple filter (lower left border in the Figure 13)
that detects and reduces these patterns by search and replace.
The result (right) indicates that most of the problematic
patterns from the left image can be eliminated successfully.

3.9 Limitations

Since our method is based on volume data, the average
memory consumption is higher than conventional height-map
based methods such as geometry clip-maps.

Regarding the geometry update of a clip box in case that
the view-point is moved, this might be slightly visible in case
of low clip-box resolutions.

�

�����&��3���������	�������'���������������	�����	�� ��	�������
��� ��	�
��
�	� ����� ���� �
���� ����� ���$�	��� 5���%	�� $��
"���	������	�6����	�����	���		%����	��	�������	���� ��"��$	��"�
�����	����	�����$����	���������	�

�

�����-�� �����	�� ��������	��� ��	� ��	�	��	�� �	����� ��� �$�	�
���
��
���2	���$���������������	���������	�,�"����� �������$	�

��
���2	��
��������
	���������	���� -����$��	���	������

 8

4. Experimental Results

�� Results from our method can be seen in Fig. 14, where
numerous landscapes demonstrate the variety of terrains that
might be visualized. The upper image shows a terrain that is
additionally enhanced by shaders for the grass and
handcrafted items to demonstrate the applicability for
computer games. The following images below have been
included to give further impressions of what is possible with
volumetric terrains in general.
�� In Fig. 15, we demonstrate that our method can be adapted
to conventional height-maps as well, where the height-map
serves as source for the CB volume data. The height-map and
the color-texture are public available on the USGS servers
[21]. The major difference by rendering height-maps in
volume based methods to conventional height-map based
methods is the vertical resolution. While the vertical
resolution of our volume based method is reduced with each
level of detail, height map based methods, such as geometry
clip-maps, have a constant vertical resolution such as 16 bit
integer per height-map pixel.
�� To evaluate our method’s performance, we generated an
example terrain consisting of about 50000 CSG operations,
which can be seen in Fig. 16. The hardware for testing has
been a dual core Pentium D 3.0 Ghz, equipped with 1GB
RAM and an Nvidia GeForce 8600 GTS graphics card.
To analyze the speed performance, we prepared two
benchmarks. First, a detailed timing of the algorithm pipeline
in Table 1, and second an evaluation of the continuous timing
behavior of a flight lasting 222 seconds through a landscape,
shown in Fig. 17.
�� In the first benchmark of Table 1, we tested the timings for
one CB resolution (128) in detail and further compared the
results among different CB resolutions.
In the test, 5 out of the 7 CBs are created from volume-data
(CB no. 3 to 7), whereas the two smallest (no.1 and 2) are
created from subdivision and enhanced with fractal details

(random mid-point displacement). The equivalent of the
visualized data volume has been 20483 voxels.
�� As for the timing evaluation, we can see that most time is
spent for the surface extraction process (Voxels to polygons).
As for the procedural volume data generation, it requires
relatively less time, which is a result of the employed caching
scheme. If caching is switched on, about 80% of a CB’s
volume data can be reused during a CB update, which
reduces the average time for the procedural computation from
100ms to about 20ms.
�� In the lower half of Table 1, different CB resolutions are
compared. To make the use of multi-threading more clear, we
refer to the Geometry Thread as Thread 1 and to the Render
Thread as Thread 2. In the table, we can see that the average
time to update one CB (CB update avg.) is roughly
proportional to the number of processed voxels. More
generally speaking, the update frequency for a CB resolution
of 128 is sufficient for an interactive exploration at high
quality, but it is not suited well for a fast flythrough. In this
case, either lower resolutions such as 96 or 64 are suited well,
or an increased number of subdivision levels can also be
helpful, as well as the earlier mentioned opportunity to skip
the innermost CBs. In many cases, an increased number of
subdivision-splits combined with random midpoint
displacement might even be desirable. Doing so, most CBs
are not only updated faster, the terrain also receives a
completely different style, which is often more appealing and
natural than the initial terrain without using subdivision. In
Fig.11 this behavior is shown in four steps, where each step is
equivalent to generating one more CB from subdivision.
�� In the second performance test, we analyzed the frame-rate
continuity of our method. Often, visualization algorithms
using LOD have difficulties to provide a continuous frame
rate since geometry updates are causing short stalls in

�

�����0��=	���������(
���	�������������������	����
	 ��������
�	���� -����������>	�	���	�*
�	��3�
����	��������?',�)3'�

��$ �	����*	��������	�����������/����	�
��	����",�
���� 	�����
�	��	�� ���	�� ���� ��	� ��� �	���
����� 5�+;6� ��	� �����2 	�� ���
�	����,� "���	� ��	� ��"	�� ��"� ������	�� ��	� �	�������� 	� ���
����	�	�������	���
������

�

 9

rendering for many methods, which can be observed as hic-
ups in the frame rate. To confirm that the proposed method
does not have this problem, we recorded benchmark data
over a longer period of time while flying through the artificial
terrain of Fig. 16. The resulting diagram can be seen in Fig.
17. However, even at polygon-counts around 800k, the
triangle throughput remains continuous at about 20 million
triangles per second and does not reveal major peaks. If we
further regard the time to render one frame (time/frame), we
notice that it changes smoothly in proportion to the scene’s
complexity (Polygons). Our algorithm does therefore not
reveal any problems that might occur due to the LOD. The
frame-rate ranged from 25 to 130 frames per second, which is
sufficient for interactive applications such as video games.
�� In order to measure the render quality of the visualized
landscapes, we analyzed the landscape of Fig. 16 at different
Clip-Box resolutions by disabling subdivision and texturing.
As a reference, we chose the highest possible resolution that
our hardware was able to handle, a landscape with 7 Clip-
Boxes at a resolution of 192. This is equivalent to visualizing
a total data volume of 122883 voxels, which would require
roughly 210 GB of memory, assuming each voxel is
represented by a single bit. To measure the screen-space-error,
we compared the renderings of lower Clip-Box resolutions to
the reference resolution, as can be seen in Fig.18. To evaluate
the error-map, we gray-scaled all images and marked each
pixel as erroneous that differed more than 20 in a range of 0
to 255 from the reference image and hence have been
noticeable.
�� The qualitative results show that we can achieve good
quality renderings if the Clip-Box resolution is at least 128.
For lower resolutions, the screen-space error increases rapidly
and leads to more inaccuracies especially at high distant
geometry. As for the quality in general, we observe an
asymptotic error behavior, where the error is about halved for
each increase in the resolution.

To show further application areas of our method, which
exceed the world of gaming, we show that our method can
also serve as a 3D function grapher to visualize general math
problems. Our method is able to visualize any function fMath
that is defined as follows:

� ���� ��� 	
 ��
�� (1)

The function input is defined as a three dimensional integer

coordinate vector (Euclidian space), while the output is
defined as zero (represented as air in the visualizer) or one
(represented as solid terrain). We have prepared results of
three generic functions in Fig. 19, image one to three, to show
this ability. There, we visualized exclusive-or (1), saw-tooth
(2) and sine curve (3). As the evaluation and visualization are
done immediate, it is further possible to alter the function
parameters on run-time.

To demonstrate further the applicability to conventional
rendering of iso-surfaces, we included image (4), which
shows a forest generated from the well-known bonsai tree
data set. We can clearly see the different levels of smoothing,
which have been used from near to far in order to limit the
loss of geometric details. The tree that has been used was
rescaled to a resolution of 2563 and placed in the landscape

�

�����8�� ������
�
�� �	��������	�� ?	� �	����	�� �� ����� ��
�������� +++� �	������ ����� ��	� 	�����	� ��������	� ��� � ���� �
���� ����
�	�� ��	� ���
��� ��� ��������,� ��	� 	����	�� �� �	� �	��
����	� ���� ��	� �	��	�� �	��������	� ��� �������� ������� �� �	��
�	��������	�����	���
���������$		���	������+; &�����������	���

�

����� �� �	������%� ��	������� 9����
�� ���		������� ��� ��	�
�	������
�	������
���	��������	��	��
�	�	����

 10

25 times. The tree scene as well as the function plot scene has
been rendered with a CB resolution of 192 at about 10-15 fps.

5. Conclusion

�� We have presented a novel approach that is able to
visualize large procedural volumetric terrains at high quality
based on nested Clip-Boxes. We even achieved visualizing a
122883 voxel sized cubic window of the complete
landscape’s volume data at interactive frame-rates. We
therefore believe that our method can efficiently be used to
visualize interesting looking terrains with so far unseen size
for video-games that may change each time the player starts
the game by consuming only a negligible amount of memory
on the mass-storage device and only posing minimal effort
for the artist.

References

[1] Duchaineau, M.Wolinsky, D.E.Sigeti, M.C.Miller,

C.Aldrich, M.B.Mineev-Weinstein, "ROAMing terrain:
real-time optimally adapting meshes", VIS'97, 81—88

[2] F.Losasso, H.Hoppe, "Geometry Clipmaps: Terrain
Rendering Using Nested Regular Grids", Siggraph
2004, 769-776

[3] W.E.Lorensen, H.E.Cline, "Marching cubes: A high
resolution 3D surface construction algorithm",
SIGGRAPH '87, 163—169

[4] B. Gregorski, “Interactive View-Dependent Rendering
of Large IsoSurfaces”, Visualization 2002, 475 – 484

[5] Aaron Knoll, "A Short Survey of Octree Volume
Rendering Techniques", GI Lecture Notes in
Informatics, Proceedings of 1st IRTG Workshop, June
14-16 2006, Dagstuhl, Germany

[6] C.Erikson, D.Manocha, W.Baxter, "HLODs for faster
display of large static and dynamic environments",SI3D
'01, 2001, 111—120

[7] P.Lindstrom, "Out-of-Core Construction and
Visualization of Multiresolution Surfaces", SI3D '03,
2003, 93-102

[8] Coat 3D V3 Voxel sculpting: (visited May 2011)
http://www.3d-coat.com/v3_voxel_sculpting.html

[9] L. Borgeat, G. Godin, F.Blais, P.Massicotte, C.Lahanier,
"GoLD: Interactive Display of Huge Colored and
Textured Models", Siggraph 2005, 869 – 877

[10] E.Gobbetti, F.Marton, "Far Voxels: A Multi-resolution
Frame-work for Huge Complex 3D Models", Siggraph
2005, 878 – 885

[11] S.Rusinkiewicz, M.Levoy, “QSplat: A Multi-resolution
Point Rendering System for Large Meshes” Siggraph
2000, 343 – 352

[12] P.Cignoni, F.Ganovelli, E.Gobbetti, F.Marton,

F.Ponchio, R.Scopigno, "Adaptive tetrapuzzles: efficient
out-of-core construction and visualization of gigantic
multiresolution polygonal models", Siggraph 2004,
796—803

[13] C.C.Tanner, C.J.Migdal, M.T.Jones, "The clipmap: A
virtual mipmap", ACM SIGGRAPH 1998, 151-158

[14] Pandromeda: http://www.pandromeda.com, visited
May 2011

[15] Terragen: http://www.terradreams.de, visited 5/ 2011
[16] P.Prusinkiewicz, M.Hammel, "A Fractal Model of

Mountains with Rivers", Graphics Interface '93, 174-
180

[17] M. Wan, N. Zhang, H. Qu, and A. Kaufman.
"Interactive Stereoscopic Rendering of Voxel-based
Terrain", IEEE Virtual Reality, pages 197-206, 2000

[18] G.M.Treece, R.W.Prager and A. H. Gee, " Regularised
marching tetrahedra: improved iso-surface extraction ",
Computers and Graphics 1998, 23(4):583-598

[19] L.R. Hermann, "Laplacian-Isoparametric Grid
Generation Scheme", J. of the Engineering Mechanics
Division of the American Society of Civil Engineers,
102:749-756, 1976.

[20] Ryan Geiss, Michael Thompson, “NVIDIA Demo Team
Secrets – Cascades”, technical presentation at the Game
Developers Conference 2007

[21] United States Geological Survey (USGS)
http://www.usgs.gov , visited May 2011

[22] Tao Ju and Frank Losasso and Scott Schaefer and Joe
Warren, “Dual contouring of hermite data”,
SIGGRAPH '02, 339—346

[23] Times: ”Computer games to out-sell music and video”,
http://business.timesonline.co.uk/tol/business/industry_s
ectors/technology/article5085685.ece (visited May
2011)

[24] Adrien Peytavie and Eric Galin and Stephane Merillou
and Jerome Grosjean: "Arches: a Framework for
Modeling Complex Terrains", Eurographics 2009,
Volume 28, pp.457—467

[25] MSNBC: Top video games may soon cost more,
http://www.msnbc.msn.com/id/3078404/ ,visited
5/2011

[26] Analysis: Trends in the Japanese Game Market:
http://www.gamasutra.com/php-
bin/news_index.php?story=20461 , visited May 2011

[27] Avatar the movie (visited May 2011):
http://en.wikipedia.org/wiki/Avatar_%282009_film%29

[28] Ken Perlin: Perlin Noise (visited July 2011)
http://en.wikipedia.org/wiki/Perlin_noise

 11

�

�����;��3��		� -����	� 	������ ��	� ����	��� ���� -���� �	���
�����
5�7+6� "��� ������	�� ��� ��	� ��"	�� ���� -���� �	���
������ -,�
7 ,��+;������ <��53
$��
����������$		������$�	����� �������	��6

�

�����7�� �
������� ��������� ���� �	��� ������ (
�� �	���� � ����$	�
�����	�� ���
��
���2���� ����	�������� ���$�	��� ��� ���
���	�����
	�"��% -����
��,�����	�� ��	�������		,����"	������ ����
���
	����������� -�
����	���������	���
��

