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Abstract 
 

This paper proposes a novel terrain-rendering method 
based on nested Clip-Boxes to visualize massive procedural 
volumetric terrains. In our method, the terrain is defined as a 
three dimensional function, provided by the user, which 
generates appealing looking, unique volumetric terrain shapes. 
For the visualization, we sample the function in a user 
defined quadratic view-region around the viewpoint and store 
the result as voxel volume data in a first step. In the second 
step, the volume data is converted into a triangle mesh for the 
hardware accelerated visualization. To provide high quality 
rendering as well as high computational performance, we 
employ level of detail by introducing a novel nested Clip Box 
strategy. Our results show, that using our strategy, 25 frames 
per second can be achieved on average for a highly detailed 
landscape. Different from existing methods, ours is the first to 
allow the immediate visualization of arbitrary sized 
volumetric terrains in real-time, as it does not depend on any 
pre-computation.  
  
1. Introduction 
 
1.1 Background 
 
�� Video games have been popular since their very inception, 
and their popularity has continued to grow since then. In 
2008, video games yielded a market larger in revenue than 
the movie and music industries [23]. In the video game 
market, especially Japan plays a significant role as it’s share 
is, with a revenue of over $7 Billion as of 2008 [26], the 
world’s second largest. Despite the increase in revenue, 
however, development costs have also dramatically increased. 
For many productions, development costs are approaching or 
exceeding the revenue of the respective video game [25]. 
Thus cutting costs is very important in this industry.  

In general, a large component of the development cost is 
the cost of labor for content generation [25]. Since video 
game users constantly demand new, larger, and more detailed 
virtual-worlds, the current system of labor-intensive content 
generation is not sustainable. Therefore, automated content 
generation is a viable way to greatly reduce development 
costs.  
�� As users tend to get bored if the same contents are 
presented each play, the demand for different contents in each 

play in one video game increases.   
In walk-through type of games, the size of a level is normally 
limited. This is mainly due to hardware constraints, such as 
the capacity of the disk space and data transfer rates as 
content is pre-generated and just displayed at game-time. If 
not very carefully exercised, this often results in a limited 
walk-through range, or a mere repetition of the plays of the 
same level already experienced. Hence, the users will become 
bored. In order to mitigate such effects, the walk-through 
range should not be experienced as limited, and there should 
not be any repetition within a given level.  
�� However, repetition is not the only issue. Content detail 
and flexibility is a problem as well. Conventionally, height-
map based methods were used for rendering terrain [1,2]. 
While height-map based approaches are largely sufficient for 
video games featuring isometric perspective such as real-time 
tactics, first person games demand more interesting 
landscapes, including concaves and overhangs. Therefore, 
recently height-maps were step-by-step replaced by 
volumetric terrains [14,20,24] so that more variable terrain 
landscapes, including concavities and overhangs, could be 
generated.   
�� The creation of these complicated, and thus interesting, 
volumetric terrains necessary for long-range walk-through 
environments can either be achieved by manual operations 
[8], or procedural methods [20,24].  Manual creation by 
content creators is expensive in terms of time and financial 
cost and thus should be reduced as much as possible.  
Procedural methods save time for creators, however, they 
produce huge amounts of data, which needs to be stored and 
loaded again on run-time. To solve this issue, procedural 
methods need to be integrated into the video game for 
generating contents at run-time. 
 
1.2 Related Work 
 
�� Related works can be found in various areas: Academia, 
video games, and general applications. Previous related work 
focused either on generating procedural terrains in an offline 
process, or on the visualization of large and detailed three-
dimensional objects in real-time.  
�� We therefore review two separate types of algorithms. 
First, algorithms used to generate procedural terrains, and 
second, algorithms used to visualize large and detailed three-
dimensional objects.  
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1.2.1 Procedural terrains  
 
�� In games, procedural terrain generation has already been 
used. An example of this is the successful video game “The 
Elder Scrolls II: Daggerfall”, by Bethesda Software. A 
massive sized terrain (a flat map, no height information) was 
one of the main elements of this game. 
�� In academia, procedural terrains can be found as well. P. 
Prusinkiewicz has developed a method to create fractal 
height-map based terrains [16]. More advanced is the method 
of A. Peytavie et. Al. [24]. He has proposed an algorithm to 
automatically generate large volumetric terrains including 
caves and overhangs. As in our method, also his method uses 
volume data for the creation of the terrain. 
�� In other areas, non-game and non-academic, procedural 
terrain generation has been developed as well. Terragen [15] 
allows the generation of arbitrary, height-map based terrains. 
In Pandromeda [14], height-map based terrains and also 
volumetric terrains can be generated. In both, [14] and [15], 
the user can freely choose a terrain function. A method that 
generates a volumetric terrain for the visualization in real-
time, is the NVidia Cascades Demo [20]. There, the terrain 
function is fixed to Perlin Noise [28].    
�� However, all related works create the terrain as an offline 
process, even though they support to visualize it in real-time 
as in [20]. There is no algorithm available yet that supports 
the dynamic generation of procedural volume data on the fly 
in parallel to the visualization process. 
 
1.2.2 Visualization of large 3D Objects 
 
�� Since our algorithm visualizes the terrain volume data as 
polygonal mesh, we also review methods that visualize large 
and detailed objects, which consist of either polygonal mesh 
data or opaque volume data. 
�� One published algorithm is [17], where the terrain is 
represented by a 512x512x64 voxel grid, and visualized by 
using multi-resolution raycasting.  
�� As for the interactive visualization of large iso-surfaces 
from volume data, Gregorski et al. [4] present a method that 
recursively subdivides the scene into diamonds based on pre-
calculated error-values. The method is basically a three-
dimensional extension of the height-map based terrain 
rendering method that is known as ROAM [1], and converts 
the input data into a special format in a pre-processing step.  
For visualizing large meshes, several methods have been 
invented. Most of them, such as [6,12], cluster the input mesh 
in multi-resolution shapes, such as cuboids or tetraeders. 
They have to be created in a pre-computation step for the 
dynamic assembly at runtime. The approach presented by 

Lindstrom [7] is similar. In his method, vertices are clustered 
in a hierarchical fashion to achieve the view-dependent LOD.  
Other related approaches propose the usage of point sprites, 
also known as splats, for representing the scene [10,11]. In 
[10], a combination of splats and polygons is used, where 
polygons solve the geometry near the viewpoint and splats 
are used for distant geometry.  
�� A method that utilizes a LOD structure, which is similar to 
ours, is called GoLD [9]. Here, the mesh resolution is 
continuously reduced according to distance by switching 
among several pre-computed detail levels of the initial mesh. 
The LODs are computed by vertex removal in order to enable 
a smooth transition by geo-morphing. 
�� However, none of the methods [6,7,9,10,11,12] is suitable 
for visualizing large on the fly generated volumetric terrain 
data. All of the aforementioned approaches require intensive 
preprocessing of the full data set—prior to visualization, and 
they have to store the complete terrain data to be visualized. 
Besides the large amount of resources necessary during 
preprocessing of polygon or volume data as in [10], to create 
the run-time structure, it is easily visible that the amount of 
data generated obviates the application of large walk-through 
ranges. 
 
1.3 Proposed Method  
 

To solve the problems above, we propose a method that 
can efficiently visualize 3D terrain data that is generated on 
the fly by a function based procedural approach. Similar to 
our approach, also [14,15] and [20] use functions to generate 
the terrain.  

The method at hand only requires the terrain functions for 
generating the underlying volumetric data and their 
parameters. Storing the entire volumetric data generated from 
these functions is not necessary. Since any arbitrarily 
expressive function can be chosen for data generation, the 
walk-through range and the number of levels are limited only 
by the parametric range of the function. Due to the possible 
large range of variations, there is a rich number of distinct 
concavities, overhangs, and other interesting structures that 
can be generated in run-time. Note, that as procedural 
creation of volumetric terrains is already addressed by 
various methods such as [14,15,20,24], the main focus of this 
paper is on generating the visualized terrain immediately on 
the fly, without relying on any pre-processed data. Different 
from the proposed method, [14,15,20,24] are not able to 
create and update the terrain data in parallel to the real time 
visualization. 
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�� Our method provides the following benefits.  
 
• Visualize arbitrary massive terrains, including interesting 

structures such as concaves and overhangs at interactive 
frame-rates. 

• The amount of manual labor necessary for content 
creation is reduced 

• The walk-through range of a level is potentially unlimited.   
• The number of terrains that can be generated is only 

limited by the number of outputs of the procedural 
generation function. 

• The terrain data is generated on the fly, in parallel to the 
visualization. 

 
�� The paper is organized as follows: Section 2 overviews the 
paper; section 3 explains the clip-box algorithm; section 4 
discusses the experimental results; and section 5 concludes 
the paper. 
 
2. Overview  
 
�� Our landscape visualization method merges terrain 
synthetization and visualization in one system. The terrain 
itself is defined as three dimensional function defined by the 
user. For the visualization, the function is sampled in a cubic 
region around the view point, and stored as volume data. For 
the hardware accelerated visualization on the GPU, the 

volume data is converted into triangle data. The conversion 
from volume data to triangles is very similar to visualizing 
iso-surfaces and can be solved by using one of the 
conventional algorithms such as marching cubes [3]. 
However, as the amount of triangles arising from direct 
volume data to polygon conversion is immense, we have to 
employ an efficient level-of-detail (LOD) approach to our 
system. This is necessary to keep the polygon-count 
reasonable for today’s graphics hardware.  
�� Nested geometry clip-maps, which derive from clip-maps 
[13], provide all of our desired features for the two-
dimensional height-map based case – however, they cannot 
solve the three-dimensional volume-data based case. 
�� We hence extend the clip-map based terrain visualization 
approach of Lossaso and Hoppe [2] on geometry clip-maps to 
the third dimension by introducing nested clip-boxes, shown 
in Fig.1. They have very similar properties to clip-maps, but 
are unlike more complex. Fig. 2 shows an example of a 
single Clip-Box (CB). In contrast to clip-maps, where nested 
regular grids suffice to represent the geometry (Fig. 1), CBs 
carry complex, rapidly changing mesh-topologies. While 
each geometry clip-map is represented as a rectangular 
portion of the landscape’s height-map, each clip-box 
represents the iso-surface of a cubic portion of the terrain 
volume data. 
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�� Our algorithm visualizes the terrain using a two-threaded 
approach that is shown as a diagram in Fig.3. The first thread 
with a low update rate creates the procedural volume data and 
converts it into polygons. The second thread with a high 
update rate continuously displays the polygons on the screen. 
For the procedural terrain generation method, which 
computes the landscape volume-data to be used by the 
nested-clip-box algorithm, we use a relatively simple function 
that produces landscapes complex enough to prove the 
efficiency of our method. Since the formula for the terrain 
generation can be defined by the user, we do not focus on 
inventing a novel formula. However, we refer to three 
interesting works on offline rendered volumetric terrains that 
show the large variety of possible landscapes that have been 
created based on mathematical computations rather than 
artistic modeling: Pandromeda Mojoworld [14], Terragen 
[15] and Arches [24]. The references show that volumetric 
terrains can be much more interesting than height map based 
terrains – even though they might not be always realistic. 
Especially in the area of entertainment, realism often is not 
the main purpose. One of the most successful movies ever, 
“Avatar” [27], might be the best example. There, a fantasy 
world called Pandora, with large floating rocks has been one 
of the main elements in the movie. 
 
3. Clip-Box Algorithm  
 
�� Our nested Clip-Box algorithm utilizes a simple and 
efficient structure to represent the terrain mesh. Similar to [2], 
where the terrain geometry is cached in a set of nested regular 
grids, our algorithm caches the geometry in a set of nested 
Clip-Boxes (Fig.1). Once the viewpoint changes, all Clip-
Box positions are updated incrementally to preserve the 
concentric LOD structure. 
 

3.1 Clip-Box  
 
�� We define a Clip-Box (CB) as the polygonal conversion of 
a cubic portion of the entire terrain’s volume data. This can 
be seen clearly in Fig. 2, where a pure CB is shown in the left 
image. The right image shows it embedded into the 
surrounding landscape. Unlike clip-maps [2], which remain 
simple regular grids with near constant complexity over time, 
CBs strongly vary in their complexity as they are shifted 
through the volume data. 
 
3.2 Data Structure 
 
�� For each CB, we store the 8-bit volume data where each 
voxel is either set (opaque) or unset (transparent). The 
polygon data that is created from conversion consists of 
triangle strips where each vertex inside the strip carries x- y- 
and z- coordinates as well as a normal vector. 
�� In addition to these two structures, we further store 
adjacency information for each voxel to speed up the voxel to 
polygon conversion process. The links (32-Bit pointers) that 
we have introduced can be seen in Fig.4. They are utilized as 
follows: 
 
• Voxel to vertex. Required for inserting a new vertex. It is 

used to check whether a vertex has already been created 
for the specific voxel. 
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• Vertex to vertex. Required for quick smoothing. Each 
vertex has a list of references to maximal 6 connected 
points. 

• Surface to surface. Required for seeking triangle-strips. 
Each surface refers to all neighboring surfaces. 

• Surface to vertex. Required to access vertices for 
rendering each surface. 

• Vertex to surface. Required for connecting new surfaces. 
The reference also helps to add the surface-to-surface 
connections instantly.  

 
3.3 Procedural Volume-Data Creation  
 
�� To verify our algorithms’ feasibility, we employ a basic 
procedural volumetric method to generate terrains that are 
complex enough for testing our algorithm. We therefore 
apply constructive solid geometry (CSG) operations to the 
volume data as in Fig.5. We procedurally add and subtract 
thousands of spheres from the empty voxel-volume using 
Boolean operations to create complex landscapes for testing 

purposes. The required parameters, size and position of each 
sphere, are random values of a user-defined range. 
�� Our approach is similar to [20], only that our method 
computes the visible terrain portions on the fly, rather than 
pre-computing the entire terrain. 
 
3.4 Volume-Data to Polygon Conversion   
 
�� As for the required basic conversion from volume data to 
polygons, numerous algorithms are available such as [3], [18] 
or [22]. However, since we also have to consider LOD, the 
three basic algorithms are not directly applicable. We further 
need to take care of the following two issues: First, how to 
close breaks in the geometry at LOD boundaries efficiently 
(Fig. 6) and second how to achieve a fast conversion. 
Marching cubes [3] and marching tetraheda [18] achieve a 
fast and appealing looking conversion from volume data to 
polygons. However, they complicate welding of two LOD 
boundaries and also generating adjacency information 
between vertices for our desired post-processing gets more 
difficult. 
�� We therefore simplify the conversion process and regard 
each voxel as a cube with six quadrilateral surfaces. This 
allows us to efficiently weld bounding LOD levels together 
seamlessly by further enabling the fast creation of adjacency 
information. The drawback of this approach is obviously a 
block-like-looking initial polygonal conversion. We solve 
this by geometry smoothing in a post-processing step. To 
weld two LOD levels together, the conversion algorithm 
considers all voxels in the bounding area of two nested CBs. 
�� For the conversion, our algorithm visits each voxel of the 
volume-data that is enclosed by one Clip-Box and creates 
surfaces - if required - by taking direct bounding neighbor 
voxels in x-, y- and z-direction into account. The used 
volume-data is binary; each voxel is either set or unset. We 
included a simple sketch in Fig. 7 to demonstrate the voxel to 
polygon conversion for the 2D case. 
 
3.5 Nesting  
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�� Nesting is required by our algorithm to achieve LOD, 
which helps to reduce the number of triangles. The LOD is 
already shown in Fig. 1. The scale factor for the Clip-Boxes 
increases exponentially by the power of two, while the 
number of voxels contained by each Clip-Box remains 
constant. For example, the size of CB one is 100x100x100, 
the size of CB two is 200x200x200 and so on – however, the 
number of voxels contained by each CB is constantly 1003. 
This means for CB one, the voxel size is one, for CB two the 
voxel size is two, for CB three it is four and so forth. In Fig. 1 
we can see that for each CB, all geometry that would interfere 
with the next inner CB has to be omitted from rendering.  
�� It is also important that all CBs are connected seamlessly 
without exhibiting gaps at the border- geometry. Gaps occur 
if the boundaries of two nested CBs are not well connected, 
as demonstrated in Fig.6. Therefore, once the creation of a 
CB is finished, bordering vertices are connected properly to 
the next outer CB to avoid gaps. This can be achieved 
efficiently by exploiting pointers in the data-structure.  
 
3.6 Moving the View-Point   
 
�� To fully understand the entire algorithm, it is further 
necessary to know what happens in case the view-point is 
moved. In the event that the viewpoint is moved, Fig. 8, it is 
important to verify all Clip-Box positions in order to preserve 
our concentric LOD structure. In an ideal case, all Clip-Boxes 
are permanently centered about the viewpoint, even if the 
observer starts moving. However, it is impossible to update 
all Clip-Boxes fast enough. We therefore update inner Clip-
Boxes often and outer ones only rarely, as done in Losasso 
[2]. This approach becomes self-evident when the four steps 
in Fig. 8 are reviewed. For example the viewpoint change 
from step 1 to 2 only requires the inner CB to be updated. 

The outer CB remains at its position, as the viewpoint change 
is not significant enough. Moving only the inner CB is 
possible, as the outer CB accommodates all geometry that is 
enclosed by its volume and can hence cover up for the gap 
arising from the move of the inner CB. A further advantage 
of this approach is that we can dynamically adjust the number 
of triangles on the screen by simply skipping the innermost 
Clip-Boxes.  
�� To minimize the amount of newly computed procedural 
volume data in the event of a Clip-Box-update, we cache the 
previously computed data and only perform differential 
updates (Fig. 9). The updated portions are referred to as 
newly computed data inside the Figure. 
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3.7 Geometry Post-Processing   
 
After the surfaces are obtained, we apply smoothing by 
Laplacian filtering [19]. This significantly improves the 
visual quality, since the mesh is very block-like after the 
initial conversion. In Fig. 10, the difference between image 
one and two is clearly visible, as image one shows the 
immediate result after conversion, while image two shows 
the smoothed geometry.  
�� In the event that a high update-rate for small CB’s near the 
viewpoint is desired, our algorithm enables fast creation of 
Clip-Box geometry from surface subdivision, rather than 
using the more complex extraction from volume-data. Fig.11 
shows the result of creating the innermost one to four CBs 
from surface subdivision. Subdivision is done according to 
Fig. 12. 
�� Even though we do not propose a novel terrain generation 
method, we added a post processing effect that helps make 
the generated terrain look more interesting. Our method 
therefore supports synthetic details by random midpoint 
displacement [16]. The effect can be seen in Fig. 10, images 
three and four. 
 
3.8 Implementation Details  
 

�� Our algorithm has been implemented by using C++. For 
the graphics API, OpenGL has been employed. We use a 
two-thread approach to separate geometry processing from 
rendering (Fig. 3). This approach maps well to the current 
generation of multi-core processors, as each thread is able to 
occupy one core. Each thread uses the corresponding CPU 
core to 100 percent continuously. Load balancing has not 
been implemented. The task distribution of the two threads is 
as follows: 
�� The geometry thread is in charge of computing the CB’s 
mesh. This involves polygon extraction from voxel data, 
triangle subdivision, mesh smoothing and random midpoint 
displacement (Synthetic details). To further improve the 
performance, we added a module to group all surfaces into 

triangle strips, allowing cache-optimal rendering. This is done 
by a depth-first search, utilizing the surface-to-surface 
connectivity information. 
�� Thread two, the rendering thread, is in charge of rendering 
all CB meshes correctly by sparing the triangles of the next 
smaller CB inside. As it runs parallel to the first thread, we 
have to be aware of concurrent use of the mesh data. We 
solved this by implementing a double-buffer system, where 
each mesh buffer is assigned to one thread. Then, once a CB 
update is completed, the buffers are swapped synchronously. 
�� In case of low voxel resolutions with many subdivision 
levels, problems near certain voxel patterns often occur that 
strongly affect the smoothed result. In Fig 13, those critical 
regions are emphasized with a white circle. We therefore 
employed a simple filter (lower left border in the Figure 13) 
that detects and reduces these patterns by search and replace. 
The result (right) indicates that most of the problematic 
patterns from the left image can be eliminated successfully. 
 
3.9 Limitations  
 

Since our method is based on volume data, the average 
memory consumption is higher than conventional height-map 
based methods such as geometry clip-maps. 

Regarding the geometry update of a clip box in case that 
the view-point is moved, this might be slightly visible in case 
of low clip-box resolutions.  
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4. Experimental Results   
 
�� Results from our method can be seen in Fig. 14, where 
numerous landscapes demonstrate the variety of terrains that 
might be visualized. The upper image shows a terrain that is 
additionally enhanced by shaders for the grass and 
handcrafted items to demonstrate the applicability for 
computer games. The following images below have been 
included to give further impressions of what is possible with 
volumetric terrains in general.  
�� In Fig. 15, we demonstrate that our method can be adapted 
to conventional height-maps as well, where the height-map 
serves as source for the CB volume data. The height-map and 
the color-texture are public available on the USGS servers 
[21]. The major difference by rendering height-maps in 
volume based methods to conventional height-map based 
methods is the vertical resolution. While the vertical 
resolution of our volume based method is reduced with each 
level of detail, height map based methods, such as geometry 
clip-maps, have a constant vertical resolution such as 16 bit 
integer per height-map pixel. 
�� To evaluate our method’s performance, we generated an 
example terrain consisting of about 50000 CSG operations, 
which can be seen in Fig. 16. The hardware for testing has 
been a dual core Pentium D 3.0 Ghz, equipped with 1GB 
RAM and an Nvidia GeForce 8600 GTS graphics card. 
To analyze the speed performance, we prepared two 
benchmarks. First, a detailed timing of the algorithm pipeline 
in Table 1, and second an evaluation of the continuous timing 
behavior of a flight lasting 222 seconds through a landscape, 
shown in Fig. 17. 
�� In the first benchmark of Table 1, we tested the timings for 
one CB resolution (128) in detail and further compared the 
results among different CB resolutions.  
In the test, 5 out of the 7 CBs are created from volume-data 
(CB no. 3 to 7), whereas the two smallest (no.1 and 2) are 
created from subdivision and enhanced with fractal details 

(random mid-point displacement). The equivalent of the 
visualized data volume has been 20483 voxels.  
�� As for the timing evaluation, we can see that most time is 
spent for the surface extraction process (Voxels to polygons). 
As for the procedural volume data generation, it requires 
relatively less time, which is a result of the employed caching 
scheme. If caching is switched on, about 80% of a CB’s 
volume data can be reused during a CB update, which 
reduces the average time for the procedural computation from 
100ms to about 20ms.  
�� In the lower half of Table 1, different CB resolutions are 
compared. To make the use of multi-threading more clear, we 
refer to the Geometry Thread as Thread 1 and to the Render 
Thread as Thread 2. In the table, we can see that the average 
time to update one CB (CB update avg.) is roughly 
proportional to the number of processed voxels. More 
generally speaking, the update frequency for a CB resolution 
of 128 is sufficient for an interactive exploration at high 
quality, but it is not suited well for a fast flythrough. In this 
case, either lower resolutions such as 96 or 64 are suited well, 
or an increased number of subdivision levels can also be 
helpful, as well as the earlier mentioned opportunity to skip 
the innermost CBs. In many cases, an increased number of 
subdivision-splits combined with random midpoint 
displacement might even be desirable. Doing so, most CBs 
are not only updated faster, the terrain also receives a 
completely different style, which is often more appealing and 
natural than the initial terrain without using subdivision. In 
Fig.11 this behavior is shown in four steps, where each step is 
equivalent to generating one more CB from subdivision. 
�� In the second performance test, we analyzed the frame-rate 
continuity of our method. Often, visualization algorithms 
using LOD have difficulties to provide a continuous frame 
rate since geometry updates are causing short stalls in 
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rendering for many methods, which can be observed as hic-
ups in the frame rate. To confirm that the proposed method 
does not have this problem, we recorded benchmark data 
over a longer period of time while flying through the artificial 
terrain of Fig. 16. The resulting diagram can be seen in Fig. 
17. However, even at polygon-counts around 800k, the 
triangle throughput remains continuous at about 20 million 
triangles per second and does not reveal major peaks. If we 
further regard the time to render one frame (time/frame), we 
notice that it changes smoothly in proportion to the scene’s 
complexity (Polygons). Our algorithm does therefore not 
reveal any problems that might occur due to the LOD. The 
frame-rate ranged from 25 to 130 frames per second, which is 
sufficient for interactive applications such as video games.  
�� In order to measure the render quality of the visualized 
landscapes, we analyzed the landscape of Fig. 16 at different 
Clip-Box resolutions by disabling subdivision and texturing. 
As a reference, we chose the highest possible resolution that 
our hardware was able to handle, a landscape with 7 Clip-
Boxes at a resolution of 192. This is equivalent to visualizing 
a total data volume of 122883 voxels, which would require 
roughly 210 GB of memory, assuming each voxel is 
represented by a single bit. To measure the screen-space-error, 
we compared the renderings of lower Clip-Box resolutions to 
the reference resolution, as can be seen in Fig.18. To evaluate 
the error-map, we gray-scaled all images and marked each 
pixel as erroneous that differed more than 20 in a range of 0 
to 255 from the reference image and hence have been 
noticeable. 
�� The qualitative results show that we can achieve good 
quality renderings if the Clip-Box resolution is at least 128. 
For lower resolutions, the screen-space error increases rapidly 
and leads to more inaccuracies especially at high distant 
geometry. As for the quality in general, we observe an 
asymptotic error behavior, where the error is about halved for 
each increase in the resolution. 

To show further application areas of our method, which 
exceed the world of gaming, we show that our method can 
also serve as a 3D function grapher to visualize general math 
problems. Our method is able to visualize any function fMath 
that is defined as follows: 

� ���� ��� 	 
 ��
��    (1) 

 
The function input is defined as a three dimensional integer 

coordinate vector (Euclidian space), while the output is 
defined as zero (represented as air in the visualizer) or one 
(represented as solid terrain). We have prepared results of 
three generic functions in Fig. 19, image one to three, to show 
this ability. There, we visualized exclusive-or (1), saw-tooth 
(2) and sine curve (3). As the evaluation and visualization are 
done immediate, it is further possible to alter the function 
parameters on run-time.  

To demonstrate further the applicability to conventional 
rendering of iso-surfaces, we included image (4), which 
shows a forest generated from the well-known bonsai tree 
data set. We can clearly see the different levels of smoothing, 
which have been used from near to far in order to limit the 
loss of geometric details. The tree that has been used was 
rescaled to a resolution of 2563 and placed in the landscape 
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25 times. The tree scene as well as the function plot scene has 
been rendered with a CB resolution of 192 at about 10-15 fps.  
 
5. Conclusion  
 
�� We have presented a novel approach that is able to 
visualize large procedural volumetric terrains at high quality 
based on nested Clip-Boxes. We even achieved visualizing a 
122883 voxel sized cubic window of the complete 
landscape’s volume data at interactive frame-rates. We 
therefore believe that our method can efficiently be used to 
visualize interesting looking terrains with so far unseen size 
for video-games that may change each time the player starts 
the game by consuming only a negligible amount of memory 
on the mass-storage device and only posing minimal effort 
for the artist. 
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