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Abstract 

 

This paper proposes a novel terrain-rendering method 

based on nested Clip-Boxes to visualize massive procedural 

volumetric terrains. In our method, the terrain is defined as a 

three dimensional function, provided by the user, which 

generates appealing looking, unique volumetric terrain shapes. 

For the visualization, we sample the function in a user 

defined quadratic view-region around the viewpoint and store 

the result as voxel volume data in a first step. In the second 

step, the volume data is converted into a triangle mesh for the 

hardware accelerated visualization. To provide high quality 

rendering as well as high computational performance, we 

employ level of detail by introducing a novel nested Clip Box 

strategy. Our results show, that using our strategy, 25 frames 

per second can be achieved on average for a highly detailed 

landscape. Different from existing methods, ours is the first to 

allow the immediate visualization of arbitrary sized 

volumetric terrains in real-time, as it does not depend on any 

pre-computation.  

  

1. Introduction 

 

1.1 Background 

 

 Video games have been popular since their very inception, 

and their popularity has continued to grow since then. In 

2008, video games yielded a market larger in revenue than 

the movie and music industries [23]. In the video game 

market, especially Japan plays a significant role as it’s share 

is, with a revenue of over $7 Billion as of 2008 [26], the 

world’s second largest. Despite the increase in revenue, 

however, development costs have also dramatically increased. 

For many productions, development costs are approaching or 

exceeding the revenue of the respective video game [25]. 

Thus cutting costs is very important in this industry.  

In general, a large component of the development cost is 

the cost of labor for content generation [25]. Since video 

game users constantly demand new, larger, and more detailed 

virtual-worlds, the current system of labor-intensive content 

generation is not sustainable. Therefore, automated content 

generation is a viable way to greatly reduce development 

costs.  

 As users tend to get bored if the same contents are 

presented each play, the demand for different contents in each 

play in one video game increases.   

In walk-through type of games, the size of a level is normally 

limited. This is mainly due to hardware constraints, such as 

the capacity of the disk space and data transfer rates as 

content is pre-generated and just displayed at game-time. If 

not very carefully exercised, this often results in a limited 

walk-through range, or a mere repetition of the plays of the 

same level already experienced. Hence, the users will become 

bored. In order to mitigate such effects, the walk-through 

range should not be experienced as limited, and there should 

not be any repetition within a given level.  

 However, repetition is not the only issue. Content detail 

and flexibility is a problem as well. Conventionally, height-

map based methods were used for rendering terrain [1,2]. 

While height-map based approaches are largely sufficient for 

video games featuring isometric perspective such as real-time 

tactics, first person games demand more interesting 

landscapes, including concaves and overhangs. Therefore, 

recently height-maps were step-by-step replaced by 

volumetric terrains [14,20,24] so that more variable terrain 

landscapes, including concavities and overhangs, could be 

generated.   

 The creation of these complicated, and thus interesting, 

volumetric terrains necessary for long-range walk-through 

environments can either be achieved by manual operations 

[8], or procedural methods [20,24].  Manual creation by 

content creators is expensive in terms of time and financial 

cost and thus should be reduced as much as possible.  

Procedural methods save time for creators, however, they 

produce huge amounts of data, which needs to be stored and 

loaded again on run-time. To solve this issue, procedural 

methods need to be integrated into the video game for 

generating contents at run-time. 

 

1.2 Related Work 

 

 Related works can be found in various areas: Academia, 

video games, and general applications. Previous related work 

focused either on generating procedural terrains in an offline 

process, or on the visualization of large and detailed three-

dimensional objects in real-time.  

 We therefore review two separate types of algorithms. 

First, algorithms used to generate procedural terrains, and 

second, algorithms used to visualize large and detailed three-

dimensional objects.  
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1.2.1 Procedural terrains  

 

 In games, procedural terrain generation has already been 

used. An example of this is the successful video game “The 

Elder Scrolls II: Daggerfall”, by Bethesda Software. A 

massive sized terrain (a flat map, no height information) was 

one of the main elements of this game. 

 In academia, procedural terrains can be found as well. P. 

Prusinkiewicz has developed a method to create fractal 

height-map based terrains [16]. More advanced is the method 

of A. Peytavie et. Al. [24]. He has proposed an algorithm to 

automatically generate large volumetric terrains including 

caves and overhangs. As in our method, also his method uses 

volume data for the creation of the terrain. 

 In other areas, non-game and non-academic, procedural 

terrain generation has been developed as well. Terragen [15] 

allows the generation of arbitrary, height-map based terrains. 

In Pandromeda [14], height-map based terrains and also 

volumetric terrains can be generated. In both, [14] and [15], 

the user can freely choose a terrain function. A method that 

generates a volumetric terrain for the visualization in real-

time, is the NVidia Cascades Demo [20]. There, the terrain 

function is fixed to Perlin Noise [28].    

 However, all related works create the terrain as an offline 

process, even though they support to visualize it in real-time 

as in [20]. There is no algorithm available yet that supports 

the dynamic generation of procedural volume data on the fly 

in parallel to the visualization process. 

 

1.2.2 Visualization of large 3D Objects 

 

 Since our algorithm visualizes the terrain volume data as 

polygonal mesh, we also review methods that visualize large 

and detailed objects, which consist of either polygonal mesh 

data or opaque volume data. 

 One published algorithm is [17], where the terrain is 

represented by a 512x512x64 voxel grid, and visualized by 

using multi-resolution raycasting.  

 As for the interactive visualization of large iso-surfaces 

from volume data, Gregorski et al. [4] present a method that 

recursively subdivides the scene into diamonds based on pre-

calculated error-values. The method is basically a three-

dimensional extension of the height-map based terrain 

rendering method that is known as ROAM [1], and converts 

the input data into a special format in a pre-processing step.  

For visualizing large meshes, several methods have been 

invented. Most of them, such as [6,12], cluster the input mesh 

in multi-resolution shapes, such as cuboids or tetraeders. 

They have to be created in a pre-computation step for the 

dynamic assembly at runtime. The approach presented by 

Lindstrom [7] is similar. In his method, vertices are clustered 

in a hierarchical fashion to achieve the view-dependent LOD.  

Other related approaches propose the usage of point sprites, 

also known as splats, for representing the scene [10,11]. In 

[10], a combination of splats and polygons is used, where 

polygons solve the geometry near the viewpoint and splats 

are used for distant geometry.  

 A method that utilizes a LOD structure, which is similar to 

ours, is called GoLD [9]. Here, the mesh resolution is 

continuously reduced according to distance by switching 

among several pre-computed detail levels of the initial mesh. 

The LODs are computed by vertex removal in order to enable 

a smooth transition by geo-morphing. 

 However, none of the methods [6,7,9,10,11,12] is suitable 

for visualizing large on the fly generated volumetric terrain 

data. All of the aforementioned approaches require intensive 

preprocessing of the full data set—prior to visualization, and 

they have to store the complete terrain data to be visualized. 

Besides the large amount of resources necessary during 

preprocessing of polygon or volume data as in [10], to create 

the run-time structure, it is easily visible that the amount of 

data generated obviates the application of large walk-through 

ranges. 

 

1.3 Proposed Method  

 

To solve the problems above, we propose a method that 

can efficiently visualize 3D terrain data that is generated on 

the fly by a function based procedural approach. Similar to 

our approach, also [14,15] and [20] use functions to generate 

the terrain.  

The method at hand only requires the terrain functions for 

generating the underlying volumetric data and their 

parameters. Storing the entire volumetric data generated from 

these functions is not necessary. Since any arbitrarily 

expressive function can be chosen for data generation, the 

walk-through range and the number of levels are limited only 

by the parametric range of the function. Due to the possible 

large range of variations, there is a rich number of distinct 

concavities, overhangs, and other interesting structures that 

can be generated in run-time. Note, that as procedural 

creation of volumetric terrains is already addressed by 

various methods such as [14,15,20,24], the main focus of this 

paper is on generating the visualized terrain immediately on 

the fly, without relying on any pre-processed data. Different 

from the proposed method, [14,15,20,24] are not able to 

create and update the terrain data in parallel to the real time 

visualization. 
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 Our method provides the following benefits.  

 

• Visualize arbitrary massive terrains, including interesting 

structures such as concaves and overhangs at interactive 

frame-rates. 

• The amount of manual labor necessary for content 

creation is reduced 

• The walk-through range of a level is potentially unlimited.   

• The number of terrains that can be generated is only 

limited by the number of outputs of the procedural 

generation function. 

• The terrain data is generated on the fly, in parallel to the 

visualization. 

 

 The paper is organized as follows: Section 2 overviews the 

paper; section 3 explains the clip-box algorithm; section 4 

discusses the experimental results; and section 5 concludes 

the paper. 

 

2. Overview  

 

 Our landscape visualization method merges terrain 

synthetization and visualization in one system. The terrain 

itself is defined as three dimensional function defined by the 

user. For the visualization, the function is sampled in a cubic 

region around the view point, and stored as volume data. For 

the hardware accelerated visualization on the GPU, the 

volume data is converted into triangle data. The conversion 

from volume data to triangles is very similar to visualizing 

iso-surfaces and can be solved by using one of the 

conventional algorithms such as marching cubes [3]. 

However, as the amount of triangles arising from direct 

volume data to polygon conversion is immense, we have to 

employ an efficient level-of-detail (LOD) approach to our 

system. This is necessary to keep the polygon-count 

reasonable for today’s graphics hardware.  

 Nested geometry clip-maps, which derive from clip-maps 

[13], provide all of our desired features for the two-

dimensional height-map based case – however, they cannot 

solve the three-dimensional volume-data based case. 

 We hence extend the clip-map based terrain visualization 

approach of Lossaso and Hoppe [2] on geometry clip-maps to 

the third dimension by introducing nested clip-boxes, shown 

in Fig.1. They have very similar properties to clip-maps, but 

are unlike more complex. Fig. 2 shows an example of a 

single Clip-Box (CB). In contrast to clip-maps, where nested 

regular grids suffice to represent the geometry (Fig. 1), CBs 

carry complex, rapidly changing mesh-topologies. While 

each geometry clip-map is represented as a rectangular 

portion of the landscape’s height-map, each clip-box 

represents the iso-surface of a cubic portion of the terrain 

volume data. 

 

Fig.1. The evolution from Clip-Map to Clip-Box: Nested 

geometry clip-maps [6] are shown top left; our Clip-Box 

based approach as sketch is top right and the final result as a 

wire-frame below. 

 

Fig.3. Algorithm Overview: Using two threads helps to 

optimally distribute the rendering and voxel to polygon 

conversion tasks on modern multi-core-CPUs. 

 

Fig.2. The Clip-Box: The left image shows the pure Clip-

Box geometry, the right shows it embedded into the 

landscape. 
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 Our algorithm visualizes the terrain using a two-threaded 

approach that is shown as a diagram in Fig.3. The first thread 

with a low update rate creates the procedural volume data and 

converts it into polygons. The second thread with a high 

update rate continuously displays the polygons on the screen. 

For the procedural terrain generation method, which 

computes the landscape volume-data to be used by the 

nested-clip-box algorithm, we use a relatively simple function 

that produces landscapes complex enough to prove the 

efficiency of our method. Since the formula for the terrain 

generation can be defined by the user, we do not focus on 

inventing a novel formula. However, we refer to three 

interesting works on offline rendered volumetric terrains that 

show the large variety of possible landscapes that have been 

created based on mathematical computations rather than 

artistic modeling: Pandromeda Mojoworld [14], Terragen 

[15] and Arches [24]. The references show that volumetric 

terrains can be much more interesting than height map based 

terrains – even though they might not be always realistic. 

Especially in the area of entertainment, realism often is not 

the main purpose. One of the most successful movies ever, 

“Avatar” [27], might be the best example. There, a fantasy 

world called Pandora, with large floating rocks has been one 

of the main elements in the movie. 

 

3. Clip-Box Algorithm  

 

 Our nested Clip-Box algorithm utilizes a simple and 

efficient structure to represent the terrain mesh. Similar to [2], 

where the terrain geometry is cached in a set of nested regular 

grids, our algorithm caches the geometry in a set of nested 

Clip-Boxes (Fig.1). Once the viewpoint changes, all Clip-

Box positions are updated incrementally to preserve the 

concentric LOD structure. 

 

3.1 Clip-Box  

 

 We define a Clip-Box (CB) as the polygonal conversion of 

a cubic portion of the entire terrain’s volume data. This can 

be seen clearly in Fig. 2, where a pure CB is shown in the left 

image. The right image shows it embedded into the 

surrounding landscape. Unlike clip-maps [2], which remain 

simple regular grids with near constant complexity over time, 

CBs strongly vary in their complexity as they are shifted 

through the volume data. 

 

3.2 Data Structure 

 

 For each CB, we store the 8-bit volume data where each 

voxel is either set (opaque) or unset (transparent). The 

polygon data that is created from conversion consists of 

triangle strips where each vertex inside the strip carries x- y- 

and z- coordinates as well as a normal vector. 

 In addition to these two structures, we further store 

adjacency information for each voxel to speed up the voxel to 

polygon conversion process. The links (32-Bit pointers) that 

we have introduced can be seen in Fig.4. They are utilized as 

follows: 

 

• Voxel to vertex. Required for inserting a new vertex. It is 

used to check whether a vertex has already been created 

for the specific voxel. 

 

Fig.4. Adjacency information: Introducing adjacency 

information helps to speed up polygon extraction and allows 

for efficient triangle-stripification.  

 

Fig.5. Landscape synthetization: Complex shapes can 

easily be created using simple CSG operations. 

 

 

Fig.6. Clip-Box connectivity: The simple method (left) 

shows an erroneous gap, while the improved version (right) 

solves this problem. 
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• Vertex to vertex. Required for quick smoothing. Each 

vertex has a list of references to maximal 6 connected 

points. 

• Surface to surface. Required for seeking triangle-strips. 

Each surface refers to all neighboring surfaces. 

• Surface to vertex. Required to access vertices for 

rendering each surface. 

• Vertex to surface. Required for connecting new surfaces. 

The reference also helps to add the surface-to-surface 

connections instantly.  

 

3.3 Procedural Volume-Data Creation  

 

 To verify our algorithms’ feasibility, we employ a basic 

procedural volumetric method to generate terrains that are 

complex enough for testing our algorithm. We therefore 

apply constructive solid geometry (CSG) operations to the 

volume data as in Fig.5. We procedurally add and subtract 

thousands of spheres from the empty voxel-volume using 

Boolean operations to create complex landscapes for testing 

purposes. The required parameters, size and position of each 

sphere, are random values of a user-defined range. 

 Our approach is similar to [20], only that our method 

computes the visible terrain portions on the fly, rather than 

pre-computing the entire terrain. 

 

3.4 Volume-Data to Polygon Conversion   

 

 As for the required basic conversion from volume data to 

polygons, numerous algorithms are available such as [3], [18] 

or [22]. However, since we also have to consider LOD, the 

three basic algorithms are not directly applicable. We further 

need to take care of the following two issues: First, how to 

close breaks in the geometry at LOD boundaries efficiently 

(Fig. 6) and second how to achieve a fast conversion. 

Marching cubes [3] and marching tetraheda [18] achieve a 

fast and appealing looking conversion from volume data to 

polygons. However, they complicate welding of two LOD 

boundaries and also generating adjacency information 

between vertices for our desired post-processing gets more 

difficult. 

 We therefore simplify the conversion process and regard 

each voxel as a cube with six quadrilateral surfaces. This 

allows us to efficiently weld bounding LOD levels together 

seamlessly by further enabling the fast creation of adjacency 

information. The drawback of this approach is obviously a 

block-like-looking initial polygonal conversion. We solve 

this by geometry smoothing in a post-processing step. To 

weld two LOD levels together, the conversion algorithm 

considers all voxels in the bounding area of two nested CBs. 

 For the conversion, our algorithm visits each voxel of the 

volume-data that is enclosed by one Clip-Box and creates 

surfaces - if required - by taking direct bounding neighbor 

voxels in x-, y- and z-direction into account. The used 

volume-data is binary; each voxel is either set or unset. We 

included a simple sketch in Fig. 7 to demonstrate the voxel to 

polygon conversion for the 2D case. 

 

3.5 Nesting  

 

 

Fig.9. Caching volume data: After the Clip-Box (CB) is moved, 

most of the volume data can be reused and only few portions need 

to be newly computed by the procedural terrain generation 

algorithm. 

 

 

Fig.7. Voxel to polygon conversion: Surfaces are created by 

analyzing each voxels bounding neighbors in +x, +y and +z 

direction. 

 

Fig.8. Moving the viewpoint: In the event that the viewpoint 

is only moved slightly, it is sufficient to update the inner Clip-

Box and let the outer remain at the same position. 
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 Nesting is required by our algorithm to achieve LOD, 

which helps to reduce the number of triangles. The LOD is 

already shown in Fig. 1. The scale factor for the Clip-Boxes 

increases exponentially by the power of two, while the 

number of voxels contained by each Clip-Box remains 

constant. For example, the size of CB one is 100x100x100, 

the size of CB two is 200x200x200 and so on – however, the 

number of voxels contained by each CB is constantly 1003. 

This means for CB one, the voxel size is one, for CB two the 

voxel size is two, for CB three it is four and so forth. In Fig. 1 

we can see that for each CB, all geometry that would interfere 

with the next inner CB has to be omitted from rendering.  

 It is also important that all CBs are connected seamlessly 

without exhibiting gaps at the border- geometry. Gaps occur 

if the boundaries of two nested CBs are not well connected, 

as demonstrated in Fig.6. Therefore, once the creation of a 

CB is finished, bordering vertices are connected properly to 

the next outer CB to avoid gaps. This can be achieved 

efficiently by exploiting pointers in the data-structure.  

 

3.6 Moving the View-Point   

 

 To fully understand the entire algorithm, it is further 

necessary to know what happens in case the view-point is 

moved. In the event that the viewpoint is moved, Fig. 8, it is 

important to verify all Clip-Box positions in order to preserve 

our concentric LOD structure. In an ideal case, all Clip-Boxes 

are permanently centered about the viewpoint, even if the 

observer starts moving. However, it is impossible to update 

all Clip-Boxes fast enough. We therefore update inner Clip-

Boxes often and outer ones only rarely, as done in Losasso 

[2]. This approach becomes self-evident when the four steps 

in Fig. 8 are reviewed. For example the viewpoint change 

from step 1 to 2 only requires the inner CB to be updated. 

The outer CB remains at its position, as the viewpoint change 

is not significant enough. Moving only the inner CB is 

possible, as the outer CB accommodates all geometry that is 

enclosed by its volume and can hence cover up for the gap 

arising from the move of the inner CB. A further advantage 

of this approach is that we can dynamically adjust the number 

of triangles on the screen by simply skipping the innermost 

Clip-Boxes.  

 To minimize the amount of newly computed procedural 

volume data in the event of a Clip-Box-update, we cache the 

previously computed data and only perform differential 

updates (Fig. 9). The updated portions are referred to as 

newly computed data inside the Figure. 

 

 

 

 

Fig.10. Geometry-processing: The four images show the 

proposed steps to process the initial mesh: (1) direct 

conversion from volume data (2) smoothed (3) surface 

subdivision (4) synthetic details. 

 

Fig.11. Fractal details: Increasing the number of CBs

generated from surface subdivision plus random midpoint 

displacement often leads to more natural and appealing 

terrains (image 4) than the initial result (image 1). 

 

Fig.12. Triangle subdivision: For each vertex, three 

additional vertices are inserted as above to preserve the near 

regular grid structure of our Clip-Box mesh. 
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3.7 Geometry Post-Processing   

 

After the surfaces are obtained, we apply smoothing by 

Laplacian filtering [19]. This significantly improves the 

visual quality, since the mesh is very block-like after the 

initial conversion. In Fig. 10, the difference between image 

one and two is clearly visible, as image one shows the 

immediate result after conversion, while image two shows 

the smoothed geometry.  

 In the event that a high update-rate for small CB’s near the 

viewpoint is desired, our algorithm enables fast creation of 

Clip-Box geometry from surface subdivision, rather than 

using the more complex extraction from volume-data. Fig.11 

shows the result of creating the innermost one to four CBs 

from surface subdivision. Subdivision is done according to 

Fig. 12. 

 Even though we do not propose a novel terrain generation 

method, we added a post processing effect that helps make 

the generated terrain look more interesting. Our method 

therefore supports synthetic details by random midpoint 

displacement [16]. The effect can be seen in Fig. 10, images 

three and four. 

 

3.8 Implementation Details  

 

 Our algorithm has been implemented by using C++. For 

the graphics API, OpenGL has been employed. We use a 

two-thread approach to separate geometry processing from 

rendering (Fig. 3). This approach maps well to the current 

generation of multi-core processors, as each thread is able to 

occupy one core. Each thread uses the corresponding CPU 

core to 100 percent continuously. Load balancing has not 

been implemented. The task distribution of the two threads is 

as follows: 

 The geometry thread is in charge of computing the CB’s 

mesh. This involves polygon extraction from voxel data, 

triangle subdivision, mesh smoothing and random midpoint 

displacement (Synthetic details). To further improve the 

performance, we added a module to group all surfaces into 

triangle strips, allowing cache-optimal rendering. This is done 

by a depth-first search, utilizing the surface-to-surface 

connectivity information. 

 Thread two, the rendering thread, is in charge of rendering 

all CB meshes correctly by sparing the triangles of the next 

smaller CB inside. As it runs parallel to the first thread, we 

have to be aware of concurrent use of the mesh data. We 

solved this by implementing a double-buffer system, where 

each mesh buffer is assigned to one thread. Then, once a CB 

update is completed, the buffers are swapped synchronously. 

 In case of low voxel resolutions with many subdivision 

levels, problems near certain voxel patterns often occur that 

strongly affect the smoothed result. In Fig 13, those critical 

regions are emphasized with a white circle. We therefore 

employed a simple filter (lower left border in the Figure 13) 

that detects and reduces these patterns by search and replace. 

The result (right) indicates that most of the problematic 

patterns from the left image can be eliminated successfully. 

 

3.9 Limitations  

 

Since our method is based on volume data, the average 

memory consumption is higher than conventional height-map 

based methods such as geometry clip-maps. 

Regarding the geometry update of a clip box in case that 

the view-point is moved, this might be slightly visible in case 

of low clip-box resolutions.  

 

 

Fig.13. Smoothing errors: Applying a simple filter operation 

on the volume data can avoid most problems (Marked by 

white circles). The filter seeks the left pattern shown below 

and replaces it by the right one. 

 

Fig.14. Complex topologies: The presented method is able 

to visualize arbitrary landscape topologies, which cannot be 

visualized using conventional height-map based methods. 
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4. Experimental Results   

 

 Results from our method can be seen in Fig. 14, where 

numerous landscapes demonstrate the variety of terrains that 

might be visualized. The upper image shows a terrain that is 

additionally enhanced by shaders for the grass and 

handcrafted items to demonstrate the applicability for 

computer games. The following images below have been 

included to give further impressions of what is possible with 

volumetric terrains in general.  

 In Fig. 15, we demonstrate that our method can be adapted 

to conventional height-maps as well, where the height-map 

serves as source for the CB volume data. The height-map and 

the color-texture are public available on the USGS servers 

[21]. The major difference by rendering height-maps in 

volume based methods to conventional height-map based 

methods is the vertical resolution. While the vertical 

resolution of our volume based method is reduced with each 

level of detail, height map based methods, such as geometry 

clip-maps, have a constant vertical resolution such as 16 bit 

integer per height-map pixel. 

 To evaluate our method’s performance, we generated an 

example terrain consisting of about 50000 CSG operations, 

which can be seen in Fig. 16. The hardware for testing has 

been a dual core Pentium D 3.0 Ghz, equipped with 1GB 

RAM and an Nvidia GeForce 8600 GTS graphics card. 

To analyze the speed performance, we prepared two 

benchmarks. First, a detailed timing of the algorithm pipeline 

in Table 1, and second an evaluation of the continuous timing 

behavior of a flight lasting 222 seconds through a landscape, 

shown in Fig. 17. 

 In the first benchmark of Table 1, we tested the timings for 

one CB resolution (128) in detail and further compared the 

results among different CB resolutions.  

In the test, 5 out of the 7 CBs are created from volume-data 

(CB no. 3 to 7), whereas the two smallest (no.1 and 2) are 

created from subdivision and enhanced with fractal details 

(random mid-point displacement). The equivalent of the 

visualized data volume has been 20483 voxels.  

 As for the timing evaluation, we can see that most time is 

spent for the surface extraction process (Voxels to polygons). 

As for the procedural volume data generation, it requires 

relatively less time, which is a result of the employed caching 

scheme. If caching is switched on, about 80% of a CB’s 

volume data can be reused during a CB update, which 

reduces the average time for the procedural computation from 

100ms to about 20ms.  

 In the lower half of Table 1, different CB resolutions are 

compared. To make the use of multi-threading more clear, we 

refer to the Geometry Thread as Thread 1 and to the Render 

Thread as Thread 2. In the table, we can see that the average 

time to update one CB (CB update avg.) is roughly 

proportional to the number of processed voxels. More 

generally speaking, the update frequency for a CB resolution 

of 128 is sufficient for an interactive exploration at high 

quality, but it is not suited well for a fast flythrough. In this 

case, either lower resolutions such as 96 or 64 are suited well, 

or an increased number of subdivision levels can also be 

helpful, as well as the earlier mentioned opportunity to skip 

the innermost CBs. In many cases, an increased number of 

subdivision-splits combined with random midpoint 

displacement might even be desirable. Doing so, most CBs 

are not only updated faster, the terrain also receives a 

completely different style, which is often more appealing and 

natural than the initial terrain without using subdivision. In 

Fig.11 this behavior is shown in four steps, where each step is 

equivalent to generating one more CB from subdivision. 

 In the second performance test, we analyzed the frame-rate 

continuity of our method. Often, visualization algorithms 

using LOD have difficulties to provide a continuous frame 

rate since geometry updates are causing short stalls in 

 

Fig.15. Real data: Our method may also handle conventional 

height-map data. Here the Puget Sound region in WA, USA. 

Table 1. Performance analysis: In the upper row, update and 

render times for one CB resolution (128) are analyzed in 

detail, while the lower row compares the performance of 

different CB resolutions. 
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rendering for many methods, which can be observed as hic-

ups in the frame rate. To confirm that the proposed method 

does not have this problem, we recorded benchmark data 

over a longer period of time while flying through the artificial 

terrain of Fig. 16. The resulting diagram can be seen in Fig. 

17. However, even at polygon-counts around 800k, the 

triangle throughput remains continuous at about 20 million 

triangles per second and does not reveal major peaks. If we 

further regard the time to render one frame (time/frame), we 

notice that it changes smoothly in proportion to the scene’s 

complexity (Polygons). Our algorithm does therefore not 

reveal any problems that might occur due to the LOD. The 

frame-rate ranged from 25 to 130 frames per second, which is 

sufficient for interactive applications such as video games.  

 In order to measure the render quality of the visualized 

landscapes, we analyzed the landscape of Fig. 16 at different 

Clip-Box resolutions by disabling subdivision and texturing. 

As a reference, we chose the highest possible resolution that 

our hardware was able to handle, a landscape with 7 Clip-

Boxes at a resolution of 192. This is equivalent to visualizing 

a total data volume of 122883 voxels, which would require 

roughly 210 GB of memory, assuming each voxel is 

represented by a single bit. To measure the screen-space-error, 

we compared the renderings of lower Clip-Box resolutions to 

the reference resolution, as can be seen in Fig.18. To evaluate 

the error-map, we gray-scaled all images and marked each 

pixel as erroneous that differed more than 20 in a range of 0 

to 255 from the reference image and hence have been 

noticeable. 

 The qualitative results show that we can achieve good 

quality renderings if the Clip-Box resolution is at least 128. 

For lower resolutions, the screen-space error increases rapidly 

and leads to more inaccuracies especially at high distant 

geometry. As for the quality in general, we observe an 

asymptotic error behavior, where the error is about halved for 

each increase in the resolution. 

To show further application areas of our method, which 

exceed the world of gaming, we show that our method can 

also serve as a 3D function grapher to visualize general math 

problems. Our method is able to visualize any function fMath 

that is defined as follows: 

�����:	�
	 → �0,1�   (1) 

 

The function input is defined as a three dimensional integer 

coordinate vector (Euclidian space), while the output is 

defined as zero (represented as air in the visualizer) or one 

(represented as solid terrain). We have prepared results of 

three generic functions in Fig. 19, image one to three, to show 

this ability. There, we visualized exclusive-or (1), saw-tooth 

(2) and sine curve (3). As the evaluation and visualization are 

done immediate, it is further possible to alter the function 

parameters on run-time.  

To demonstrate further the applicability to conventional 

rendering of iso-surfaces, we included image (4), which 

shows a forest generated from the well-known bonsai tree 

data set. We can clearly see the different levels of smoothing, 

which have been used from near to far in order to limit the 

loss of geometric details. The tree that has been used was 

rescaled to a resolution of 2563 and placed in the landscape 

 

Fig.17. Continuous performance: We recorded a flight 

lasting 222 seconds into the example landscape of Fig.16 

and captured the amount of polygons, the elapsed time per 

frame and the render performance in million polygons per 

second. The CB resolution has been set to 1283 for this test. 

 

Fig.16. Benchmark scenario: Various screenshots of the 

terrain used in our performance measurements. 
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25 times. The tree scene as well as the function plot scene has 

been rendered with a CB resolution of 192 at about 10-15 fps.  

 

5. Conclusion  

 

 We have presented a novel approach that is able to 

visualize large procedural volumetric terrains at high quality 

based on nested Clip-Boxes. We even achieved visualizing a 

122883 voxel sized cubic window of the complete 

landscape’s volume data at interactive frame-rates. We 

therefore believe that our method can efficiently be used to 

visualize interesting looking terrains with so far unseen size 

for video-games that may change each time the player starts 

the game by consuming only a negligible amount of memory 

on the mass-storage device and only posing minimal effort 

for the artist. 
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Fig.18. Screen-space error: The highest Clip-Box resolution 

(192) was compared to the lower Clip-Box resolutions 64, 

96, 128 and 160. (Subdivision has been disabled for this test) 

 

Fig.19. Function plotting and real data: Our method can be 

applied to visualizing mathematical problems in an 

interactive walk-through, images one to three, as well as for 

conventional iso-surfaces in image four. 


