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Abstract

We present a novel skinned skeletal animation system based on spline-aligned deformations for providing high

quality and fully designable deformations in real-time. Our ambition is to allow artists the easy creation of ab-

stract, pose-dependent deformation behaviors that might directly be assigned to a large variety of target objects

simultaneously. To achieve this goal, we introduce the usage of deformation styles and demonstrate their appli-

cability by our animation system. We therefore enhance spline-skinned skeletal animation with two sweep-based

free-form-deformation (FFD) variants. The two FFD variants are pose-dependent, driven by three textures and

three curves, which can be designed by the artist. As the three textures are similar to height-maps, their creation is

very intuitive. Once designed, the deformation styles can be directly applied to any number of targets for imitating

material behaviors of cloth, metal or even muscles. Our GPU based implementation shows promising results for

real-time usage, as about 30 Million vertices per second can be animated. The basic spline-skinning even reaches

more than twice the speed and gets close to the performance of skeletal subspace deformation (SSD). Furthermore,

our method can easily be combined along with other existing deformation techniques as pose space deformation

or SSD.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object ModelingHierarchy and geometric transformations I.3.5 [Computer Graphics]: Computational Geome-
try and Object ModelingSplines I.3.7 [Computer Graphics]: Three-Dimensional Graphics and RealismAnimation

1. Introduction

Character animation is one of the major components in
most digital productions, including cinematic productions
as well as interactive applications as video games. To cover
the required deformation issue, many approaches have been
suggested over time, ranging from free-form-deformation
(FFD) based techniques over skeletal methods to advanced
algorithms, which also take a mesh’s topology, physical con-
straints and even authentic data from laser-scans into ac-
count. In the recent years, especially one method has widely
found acceptance to cover skeletal animation: the so-called
linear blend or matrix skinning, also known as skeletal sub-
space deformation (SSD). It is the most popular method
among all authoring tools and interactive applications. The
key of SSD’s success easy to explain: it is simple and well-
balanced—in terms of quality, speed and implementation
complexity.

However, it is far from perfect, since its deformations ex-
pose the well-known candy-wrapper effect for twisting oper-
ations and collapsing geometry while bending. This issue is
very annoying for artists and has inspired many researchers
to come up with new solutions and alternative methods. Un-
fortunately, most inventions have not found their way into
practical usage—and the reason is easy to explain: Often,
methods are either very complex, so it is hard to accomplish
their implementation in a reasonable time, or their compu-
tation is simply too demanding. Especially in real-time ap-
plications as for example video games, fast evaluations are
mandatory. However, also in offline rendering systems, as
for cinematic productions, time is an important and non-
negligible factor.

We are therefore concerned with a practical solution that
provides high quality deformations, easy handling, a fast and
stable evaluation, hardware accelerator compliance, an easy
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implementation and compliance to existing skeletal anima-
tion methods.

A further and maybe even more important issue for an
animation system’s success is the degree of freedom to ad-
just a deformation. Here, especially pose-space-deformation
(PSD) has made an important contribution to allow artists the
design for each pose of an animation individually. However,
PSD has a significant restriction: If an artist has enhanced a
certain pose—for example by modeling a joints muscle- or
cloth-like behavior—it is not possible to reuse this particu-
lar behavior for any other joint. Our main goal is therefore
to create a system allowing the abstract and reusable design
of a joints deformation behavior. This property allows one
deformation behavior to be applied immediately to a large
number of various targets, reducing an artist’s work consid-
erably.

2. Concept and Design

For creating the animation system, we carefully took our de-
sign goals into account. As for the foundation of our skinned
skeletal animation system, we decided to use spline-aligned
deformation [SF98]. It naturally provides high-quality bend
and twist deformations without exposing unwanted arti-
facts like SSD. Another advantage is their fast and stable
evaluation—an important property for our desired imple-
mentation on the GPU. As for the spline function, we use a
special polynomial based spline with variable exponent that
is dependent on only three control-points for highest perfor-
mance.

In order to achieve reusable pose dependent designs, our
central aim, we introduce the usage of deformation styles.
The idea is to allow the abstract design of a deformation be-
havior, without requiring any knowledge about the underly-
ing geometry it is applied to. This is one step forward beyond
PSD, since PSD always has to be aware of the geometry it is
applied to. To solve this problem efficiently, we decided to
utilize two sweep-based FFD variants, which are attached to
each joint.

The first of our two methods is based on a high-resolution,
radial FFD grid, which is wrapped around the spline. It al-
lows the creation of high resolution concentric deformation
effects such as for metal, cloth or even muscle bulges. It is
driven by three scale textures, which are weighted blended,
depending on the spline’s pose. The three textures are uti-
lized for frontal, lateral and radial scaling. Our second FFD
variant is a rectangular scale envelope that is supposed to al-
low a simple definition of more general scalings. The artist
therefore draws three outlining curves for the frontal, lateral
and radial direction. Goals of the second variant include the
design of folds to prevent self-intersections near the elbow
or the modeling of major lateral bulges for soft-bodies.

3. Contributions

Our skinned skeletal animation system can list the following
four contributions:

Reusable deformation-styles: The presented system al-
lows the abstract design of pose-dependent deformation be-
haviors for the imitation of complex material deformations.
Once designed, a style can immediately be applied to an ar-
bitrary number of joints simultaneously. This saves time for
the artist during the modeling phase, and may further save
memory during run-time, as each style needs to be stored
only once.

Fast computation: We achieved a very efficient GPU
based implementation of the spline-based skinned skeletal
animation system, which outperforms the GPU based imple-
mentation described in [FO06] by factor three for the basic
spline skinning without deformation-styles. Our algorithm’s
speed without deformation-styles further gets close to the
performance of SSD, which is often referred to as the fastest
skinned skeletal animation system. For the case of deforma-
tion styles being included, our system still shows a very com-
petitive speed, as the vertex deformation rate remains high at
30 Million vertices per second on our testing system.

Simplicity: Our algorithm is based on simple mathemat-
ics and does not contain complex data structures or the re-
quirement of comprehensive mathematical libraries. We as-
sume the implementation to be feasible in a reasonable time
without complications. Furthermore, the designed deforma-
tion styles cover the complete pose-space of a joint and
hence avoid the usage of radial basic functions for the in-
terpolation between certain poses.

Memory usage: In contrast to the GPU-based spline-
aligned skeletal animation system [FO06], where each ver-
tex and each normal of the animated mesh were required to
be stored three times (once for each spline), our novel algo-
rithm requires them to be stored only once.

4. Related Work

Over time, many methods have appeared to achieve the an-
imation of characters, where the most important methods
can be divided into FFD [SP86], SSD [MTLT88], shape
blending and spline aligned deformations [SF98]. They form
the foundation for many subsequent research approaches
and reappeared in countless variants and combinations since
their initial invention. In order to increase the deformation
quality and realism for skeletal animations, various methods
have been suggested.

Methods that directly improve upon SSD are [KZ05] and
[KCOZ06]. They change the interpolation domain from ma-
trices to quaternions or even dual quaternions. This success-
fully avoids effects as collapsing geometry by preserving a
high computational speed.

A different and more flexible approach is to use spline
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aligned deformations and apply them in a skinned way to
character animation. Two methods to achieve this are [FO06]
and [YSZ06]. As for [YSZ06], the focus lies especially on
the modeling case, as their implementation is a plugin for the
commercial software Maya, while [FO06] focusses on the
application in real-time systems by extensive usage of the
GPU. A related approach in this context is also [CSM05],
where curve skeletons are introduced and discussed in gen-
eral.

A method advancing on FFD is sweep-based
FFD [YK06]. It provides the ability to efficiently model ra-
dial deformations by allowing the user to edit cross-sections
along spline-curves. In the presented system, we utilize two
variants of sweep-based FFDs to apply our deformation
styles to the geometry. A further sweep-based algorithm
is [HYC∗05]. The authors use sweep-based deformation to
create skinned skeletal animation. To a certain degree, this
allows the creation of customized deformations, as the user
can model muscles, which are taken into account during the
deformation.

To provide more realistic deformations, advanced meth-
ods such as [BMGK06], [MG04], [CGC∗02] and [PJS06]
have been invented. They allow the adjustment of the mate-
rial stiffness, which directly affects the deformation. Other
methods, such as [ZHS∗05] construct an inner graph to pre-
serve the mesh’s inner volume while deforming.

A method allowing the reuse of deformations is [SP04],
where the animation of one mesh may drive the deformation
of a another, similar mesh. Different from ours, their method
is targeted on reusing the complete deformation, while our
method is especially focused on reusing a deformation’s be-
havior.

Example based methods allow the pose-dependent mod-
ification of animations. They have been introduced by
pose-space-deformation (PSD) [LCF00] and advanced
by [TRN06] and [SCFRC01]. PSD basically allows the artist
to individualize particular poses, where intermediate poses
are calculated by interpolation. In our case, pose-dependent
deformations can also be modeled by the artist, but in a dif-
ferent way. Instead of directly modifying a certain vertex in
a certain pose, our method targets at a more abstract design,
covering all poses at once.

Different from the former approaches are cloth simu-
lations to provide realistic deformations and surface de-
tails. A comprehensive overview can be found in [MTV05].
Related to cloth and somehow similar to our method,
also [VMT99], [JJT05] and [LC04] allow the design of sur-
face details for the animation. However, different from our
design, all three methods apply surface details in direction
to the surface normal instead of using FFD, and dependent
on the local mesh deformation instead of utilizing the skele-
ton’s pose. A method different from PSD to apply surface
details based on the pose, is [DJW∗06], where wrinkles are
generated procedurally to create cloth-like behaviors.

5. Splines

Figure 1: Spline functions: In the upper row, we compare

our short-listed spline functions. The lower row shows the

ability of our spline to adjust the stiffness by parameter a.

In order to achieve spline-aligned deformation, we first
have to find a suitable spline-function. For making a deci-
sion, we short-listed the trigonometric Arc-spline and the
polynomial Bézier-spline. Both can be evaluated very fast,
which is important for our GPU-based implementation. In
order to provide highest performance, we have further de-
cided to limit the number of control points to three. How-
ever, both functions do not naturally allow a modification of
the curve stiffness without adding further control points. In
our approach, the second control point basically represents
a joint’s rotation center, and hence, additional control points
will complicate the computation. Since we want to keep a
simple and easy handling, we remained using three control
points p1,2,3 and modified the basic Bézier spline function
fb to create a new spline function fm, providing an addi-
tional parameter a for a continuous variable adjustment of
the spline’s stiffness (Fig.1):

∆12 = p2 − p1

∆23 = p3 − p2

∀x ∈ IR | x ∈ [0,1]
∀a ∈ IR | a ≥ 2

Conventional Bezier curve:

fb(x) = p1 · (1− x)2 + p2 · (2 · x · (1− x))+ p3 · x
2

f ′b(x) = p1 ·2 · (x−1)+ p2 · (2−4x)+ p3 ·2 · x

Our modified Bezier curve:

fm(x) = p1 +∆12 · (1− (1− x)a)+∆23 · x
a

f ′m(x) = ∆12 ·a · (1− x)a−1 +∆23 ·a · x
a−1

5.1. Spline Aligned Deformation

In order to apply our spline as a geometric deformation, it is
necessary to construct a complete coordinate-system around
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Figure 2: The spline coordinate system: The left side shows

the spline function in violet together with the spline’s coor-

dinate system. The spline’s tangent is indicated in blue, the

normal in red, the binormal in green and the origin of each

coordinate system in yellow. On the right-hand side, we can

see an example deformation.

it, the so-called Frenet-frame, as shown in Fig.2. We can
compute a complete orthonormal basis b for each position
of the spline, consisting of origin bO, normal bN , tangent bT

and binormal bB as follows:

bT (x) = f ′m(x)
bN = ∆12 ×∆23

bB(x) = bN ×bT (x)
bO(x) = fm(x)

B = [bN | bB | bT | bO]

B =









bN .x bB.x bT .x bO.x
bN .y bB.y bT .y bO.y
bN .z bB.z bT .z bO.z

0 0 0 1









The origin of the coordinate frame is simply the spline
function fm itself. Then, the tangent is equal to the spline’s
derivative f ′m, the normal can be pre-calculated as it is per-
pendicular to the three control points p1,2,3 and finally the
binormal can be computed as cross-product of the normal
and the tangent vector. We can further create the 4x4 trans-
formation matrix B by arranging our four computed vectors
as column vectors.

5.2. Spline Binding

Prior to the deformation, we have to map all vertices of our
target mesh perpendicular to a definite position x on the
spline. We achieve this by utilizing a binary search algo-
rithm, starting at x = 0.5 as it is shown in Fig. 3. In order
to determine the search direction for x at each step, we can
utilize the perpendicular constraint based on the scalar prod-
uct 〈· | ·〉, the vertex v and the plane defined by bT and bO as
follows:

〈bT (x) | v−bO(x)〉 =







< 0, v lies in front of the plane
= 0, v lies in the plane (solved)
> 0, v lies behind the plane

Figure 3: The binding process: The left side shows the per-

pendicular mapping of vertex v to the spline by using binary

search. The right side shows a way to determine the search

direction in each step.

For further computations, we introduce the spline-basis
representation v′ of v according to the spline’s matrix B:

v′ = B−1 · v

6. Deformation Styles

Figure 4: Deformation Styles: We applied two different de-

formation styles equally to three objects. Style 1 shows the

radial, texture based approach while Style 2 is an example

for the rectangular, curve-based method.

In order to allow a more flexible adjustment of the spline-
aligned deformation, we are introducing the use of defor-
mation styles. They allow the pose-dependent modeling of
a joint’s deformation which can be used to create material
behaviors of metal, cloth or muscles. Each style is created
from the combination of two pose-dependent FFD variants,
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where each variant has its own advantages that cannot be re-
placed by the other. The first method applies a radial scale
envelope (Fig.4, Style 1) while the second method is using a
rectangular scale envelope (Fig. 4, Style 2).

6.1. Radial Scale Envelope

Figure 5: Radial Scale Envelope: The lower left side shows

an example envelope while the upper right side shows the

concentric scaling of v in relation to the spline.

The Radial Scale Envelope is shown in Fig.4 as Style 1
and designed to allow high resolution skin deformation ef-
fects such as folds and wrinkles, for example. The algorithm
basically applies the deformation by concentrically scaling
a vertex v of the target object in relation to the spline ori-
gin bO, as it is shown in Fig.5. The scaling is determined
by a radial scale function Srs, which depends on the two-
dimensional position (x,α) on the envelopes surface and the
pose of the joint. The pose is defined by the joint’s twist γ

and the joint’s bend-angle β, where β is based on the two
vectors ∆12 and ∆23. The angle α denotes the angle between
the vertex v and the spline’s binormal bB in relation to the
spline’s origin bO. We define our deformation function Drad

to evaluate the deformed vertex as follows.

∀α,β ∈ [0,π]
∀γ ≥ 0

Drad(v′) = v′ ·Srs(x,α,β,γ)

Since the scaling needs to be applied in spline space, we
are using v′ instead of v. This simplifies our calculation, as
the origin in spline-space is bO and the multiplication of v′

by any scalar is equal to scaling v′ in relation to bO.

6.2. Radial Scale Function and Textures

The scale function Srs is the heart of the radial deforma-
tion and computes the scaling based on three scale textures,
shown in Fig.6, upper row. The first texture Tf is used for
frontal scaling, the second for lateral (Tl) and the third for

Figure 6: Scale Textures: The upper row shows the three

scale textures that were used to create Style 1 in Fig.4 and

an example object where the textures are applied. The lower

row shows the pose-dependent weight calculation to apply

the three textures, where red corresponds to the weight of

the frontal scale texture, green to the lateral and blue to the

radial.

radial (Tr). The weight distribution for the three textures can
be seen in Fig.6, lower row. The weight for the frontal tex-
ture w f represented by red, for the lateral wl by green and
for the radial wr by blue. In order to compute the scale
factor for a certain vertex v, we sample all three textures
at the texture-coordinate (x,α/π), evaluate the three pose-
dependent weights w f ,l,r and compute the scaling result Srs

as follows.

∀w f ,wl ,wr ∈ [0,1]
∀wsum, t f , tl , tr,Tf ,Tl ,Tr ≥ 0

w f = max(−cos(α),0) ·β
wl =| sin(α) | ·β
wr = γ

wsum = w f +wl +wr

t f = w f ·Tf (x,α/π)
tl = wl ·Tl(x,α/π)
tr = wr ·Tr(x,α/π)

Srs = (t f + tl + tr)/max(1,wsum)+max(1−wsum,0)

The idea of this formula is basically to compute the weight
for the frontal and the lateral texture based on the angle α

and the radial weight based on the twist angle γ. In our for-
mula, wsum represents the sum of all weights, and t f ,l,r the
weighted texture samples. In order to preserve unity scaling
for identity textures at any pose, our formula meets the fol-
lowing condition:

∀x,α | Tf ,l,r(x,α/π) = 1 : Srs(x,α,β,γ) = 1,∀β,γ

c© Association for Computing Machinery, Inc. 2007.
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6.3. Rectangular Scale Envelope

Figure 7: Rectangular Scale Envelope: The left side shows

the application to an example object while the right side

shows the scaling of v corresponding to bB and bN

The rectangular scale envelope is shown in Fig.4 as Style
2 and thought to allow the design of the deformations con-
tour. The algorithm basically applies scaling of a vertex v

in the two directions bB and bN independently, as shown in
Fig.7. This is very different from the former radial method
that applies a concentric scaling. The purpose of the rect-
angular approach is the modeling of major frontal folds or
lateral effects such as creating bulges. In order to design the
deformation, the artist has the freedom to create three func-
tions, which drive the scaling in the frontal, lateral and radial
direction.

The scaling is driven by two scaling functions S f ,l ,
whereas S f applies frontal scaling in direction of bB and Sl

the lateral in direction bN . More specifically, we can write
the deformation function Drect as follows:

Drect(v
′) =









v′x ·Sl(x,β,γ)
v′y ·S f (x,α,β,γ)
v′z
1









The rectangular scaling is also calculated in spline space,
and we therefore use v′ instead of v. The spline-space repre-
sentation v′ of v is very handy, as the x-axis in spline space
is along bN and the y-axis along bB. This allows an easy
application of the two scaling functions S f (frontal) and Sl

(lateral). As before, the angle α defines the angle between v

and bB in relation to bO. The two angles β and γ define the
spline’s pose.

6.4. Rectangular Scale Functions

For designing the rectangular scale envelope, the artist can
define three curves C f ,l,r, which directly affect the contour
of the deformed object in frontal (C f ), lateral (Cl) and radial

Figure 8: Rectangular Scaling: The upper row shows the

three scale functions that were used to create Style 2 in Fig.4.

In the example object on the right, we can see the scale fac-

tors while bending. Green represents the lateral and red for

the frontal scaling. The lower row shows the pose-dependent

weights. Red corresponds to the weight of the frontal scale

function, green to the lateral and blue to the radial.

(Cr) direction. Fig.8, uppper row, shows the three curves that
have been used to create Style 2 in Fig.4. The three curves
are basically applied to the two scaling functions S f ,l as the
textures Tf ,l,r have been applied to Srs before. The only dif-
ference is, that we have to separately treat frontal and lateral
scaling. We can further simplify the calculation of the lateral
weight w′

l as it is not depending on α anymore and write the
formula for S f and Sl as follows.

∀C f ,Cl ,Cr,c f ,cl ,cr,w
′

l ,wsum1,wsum2 ≥ 0

w′

l = β

wsum1 = w f +wr

wsum2 = w′

l +wr

c f = w f ·C f (x)
cl = w′

l ·Cl(x)
cr = wr ·Cr(x)

S f = (c f + cr)/max(1,wsum1)+max(1−wsum1,0)
Sl = (cl + cr)/max(1,wsum2)+max(1−wsum2,0)

To get an idea of the pose-dependent weights that are
used to define the importance of each curve C, we include
a couple of example poses in Fig.8, lower row. They demon-
strate the weights by color indication. For the computation
of S f and Sl , we introduce three new variables in addition
to the previous formula of Srs. The first is w′

l , our new lat-
eral weight, the second wsum1 to store the frontal weight and
the third wsum2 to store the radial weight. As for the radial
scaling function Srs, our frontal and lateral scaling functions
S f and Sl also have to preserve unity scaling (S f ,l = 1) for
identity curves (C f ,l,r = 1).
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7. Deformation Styles and Spline Skinning

Figure 9: Spline skinning: The colors indicate the weight

for each spline. Red is related to the body spline, green to

the shoulder and blue to the elbow.

To compute our final deformed vertex v f for n influencing
splines Bi, we can simply associate our prior deformations
Drect and Drad as follows:

v f = ∑
n
i=1 wi ·Bi ·Drect(Drad(B′

i
−1

· v))

For the formula, we use two different spline bases. The
basis of the actual pose is defined by B, while B′ defines the
basis while binding. We successively apply our radial de-
formation first, then our rectangular scaling and the spline
deformation last, before using the skinning weights wi for
computing the final result. In transition areas where two or
more splines meet, styles are blended automatically depend-
ing on the skinning weights. For the basic case, in which
only spline skinning is used, we get the well-known formula
of SSD by pre-computing B′′

i :

B′′

i = Bi ·B
′

i
−1

v f = ∑
n
i=1 wi ·B

′′

i · v

The skinning weights are defined by the artist, who can
paint them onto the surface as in Fig.9. This is already a com-
mon technique in most professional modeling tools such as
Maya or 3DS Max. To preserve a correct scaling, all weights
wi must sum up to one.

8. Implementation Details

Figure 10: Spline discretization: Pre-computing all splines

is one of the key improvements in our implementation to in-

crease the speed.

In order to achieve an efficient GPU-based implementa-
tion, we had to introduce several optimizations and restric-
tions to our algorithm. Our first optimization is to sepa-
rate the spline computation from the per-vertex deformation.

In our initial implementation, we were required to evaluate
three spline bases per vertex, which was quite demanding.
Therefore, we outsourced the computation of the spline ba-
sis B to a preprocessing step. There we sample the spline at a
fixed number of positions and store the result into three float
textures. We require three textures since we need to store the
complete basis B consisting of 12 variables at each position,
which is equal to three RGBA pixels.

Now, for deforming one vertex, it is sufficient to only
sample the pre-computed textures at the splines position x,
which is much faster. Here we also profit from the graphic
cards texture-filtering feature, as we can directly receive the
linearly interpolated spline basis. Without this feature, our
spline will show aliasing effects as in Fig.10.

To further improve the speed, we limited the number of
influencing spline curves per vertex to three and only ap-
ply one deformation style to the most relevant spline. This
is sufficient for most cases, as the joint centers of different
joints are usually distant enough to prevent errors. As for the
deformation, we deform each triangle’s vertices and surface
normals—but we do not include binormals and tangent vec-
tors. Another issue is the computation accuracy. As recent
graphic cards show a weakness to 32-Bit floating point tex-
ture filtering, we decided to use 16-Bit textures, which still
provides enough accuracy for satisfying results. The filtering
of 32-Bit textures is often too slow or even unsupported.

9. Limitations

Even though our method has many advantages in the design
of high quality deformations, there are also certain limita-
tions. This first is volume preservation. Since our method is
completely dependent on the artist’s design, it is up to the
artist to design a deformation that seems to preserve the vol-
ume or one that models a hollow material and not preserves
it. Our second issue is related to PSD. Unlike PSD, where
each vertex of a target mesh can freely be modeled pose-
dependently, our deformation styles can only affect vertices
that are close to the joint they are attached to. Their move-
ment is further defined by the constraints of sweep based
FFD. Our last issue regards self intersections. The proposed
method does not compute or automatically prevent them—
however, the artist may create deformation styles that give
the impression of an intersection-free deformation.

10. Results

The first results of our approach can already be seen in Fig.4,
where two styles are applied to three objects. Since the ob-
jects are very different, we can successfully demonstrate the
geometry independence of our method. More appealingly,
Fig.11 can demonstrate the effectiveness of our algorithm.
We applied a metal-like behavior to a cuboid and created
snapshots from various poses.
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Figure 11: Metal: This figure shows the animation of de-

signed metal, which smoothly deforms as the pose changes.

In Fig.12, we present the method’s ability to design trans-
ferable muscle bulges. The left side shows two characters
using conventional spline-skinning, while the right side in-
cludes our deformation styles. As expected, the surface de-
tails of the character in the lower row do not interfere with
the applied muscle-style. An example for modeling the de-
formation of a hollow material can be seen in Fig.13. We
improved the realism by displacing the spline origin bO

along the binormal bB while applying Drad and Drect . The
successful prevention of self-intersections by using defor-
mation styles can be seen in Fig.14. It is further an exam-
ple for designed lateral bulges, whereas all curves are taken
from Fig.8. The imitation of cloth is demonstrated by Fig.15,
where we clearly can recognize the applied cloth style near
the knee region. The textures that have been used in the re-
sults were painted using conventional imaging tools. How-
ever, for an improved workflow, interactive texture-painting
in a WYSIWYG fashion might be advantageous.

For our implementation we used the OpenGL shad-
ing language GLSL and the render-to-vertexbuffer tech-
nique [Sch06], which can be realized in OpenGL by using
the pixel-buffer-object (PBO) extension. The benchmark of
our method is displayed in Fig.16, where we tested various
algorithm configurations. In case that only basic spline skin-
ning is used, our algorithm gets close to SSD and reaches
the pleasing speed of 85 Million vertices per second. If our
deformation methods are added step by step, the speed de-
creases to 30M vertices per second, which is still satisfac-
tory for real-time applications. The speed is not equal for
all objects, which might be caused by an implementation is-
sue of our method. We switch the rendering context of the
frame-buffer-object (FBO) for each object, which is a rela-
tively expensive operation. However, there is no direct rela-
tion to computing the deformation.

Figure 12: Muscles: Created muscles can easily be applied

to different characters simultaneously.

Figure 13: Hollow materials: Here an animation of crunch-

ing an empty can.

To measure our method’s performance more detailed, we
created a general timing-breakdown, shown in Table 1. We
investigated the timing for two scenes—cuboid and cylin-
der. For each of the two objects, we also computed the skin-
ning based on three spline-curves, each approximated by 32
samples. The scale texture resolution was 32x64 pixels. As
for the timing breakdown, we can see that the major time
consumption is caused by our two deformation methods (ra-
dial and rect deform) and followed by the spline-skinning
(spline deform). Precalculating the spline matrices requires
surprisingly less time. The step called Copy FBO to VBO

is required by the OpenGL architecture and does a complete
copy of all vertices from the FBO to the vertex-buffer-object.
The final step for rendering the scene is relatively fast, as
we did not include complex lighting evaluations. For bench-
marking, we created character scenes consisting of about 1
Million vertices to get representative results. In Fig.16, the
number in front of each character indicates the number of
times it was duplicated to reach 1M vertices.
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Figure 14: Self intersections: Demonstrated is the efficient

removal of self intersections (right) as well as modeled lat-

eral bulges. The the non-style version is shown on the left.

Figure 15: Cloth: This example shows the algorithm’s abil-

ity to imitate cloth-like wrinkles.

11. Conclusion

In our initial research on deformation styles for character
animation, we have presented an efficient implementation
by utilizing sweep-based FFD, applied to spline skinning.
Deformation styles have the advantage of allowing abstract
design of a deformation which can be used over and over
again for various animations and characters. In larger pro-
ductions, this can be very useful, to save artist’s time by cre-
ating individualized deformations which have to be applied
to a multitude of different characters.

Figure 16: Benchmark results: Spline skinning indicates ba-

sic spline aligned deformation, Radial adds Drad , Rect adds

Drect and Rect+Radial adds both.

Table 1: Timing breakdown: The table shows the de-

tailed timing of our GPU-based implementation. Cuboid and

Cylinder refer to the first and second object in Fig.16.

Scene 12x Cuboid 75x Cylinder
Vertices Object 12528 92526
Vertices Scene 12 x 12k 75 x 92k

= 0.94M = 1.11M
Spline Samples 12 x 3 x 32 75 x 3 x 32

= 1152 = 7200
Timing (Scene)
Spline Matrices 0.3 ms 0.3 ms
Deform (Radial) 7.8 ms 8.7 ms
Deform (Rect) 12.6 ms 9.7 ms
Deform (Spline) 5.5 ms 7.9 ms
Copy FBO to VBO 1.9 ms 4.9 ms
Render Scene 3.4 ms 4.5 ms
Total 31.7 ms 36.1 ms
Vertices/sec 34.4M 25.4M

Our proposed method can further exhibit an excellent per-
formance, as the final implementation is capable of render-
ing massive scenes with customized deformations in real-
time. The implementation also contributes in the field of
spline-based skinned skeletal animation, as our method sig-
nificantly outperforms previous approaches. Since we apply
the basic weight-based skinning method of SSD, integration
in existing animation systems can be easily achieved. We
believe that the idea of deformation styles can pave the way
for further fruitful research and also can have many practical
applications.
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12. Future work

As our method only shows one way to achieve abstract pose
dependent design, further research might come up with dif-
ferent or more general approaches. One idea might be for ex-
ample the utilization of volumetric scale textures to achieve
a more flexible deformation. Another one could be, to pass
the deformation further detailed to the surface by utilizing
bump- or displacement maps, which is in particular of inter-
est for low-poly models.
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